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Definition

Computational psychiatry is a heterogeneous field at the intersection of computational neuroscience
and psychiatry. Incorporating methods from psychiatry, psychology, neuroscience, behavioral
economics, and machine learning, computational psychiatry focuses on building mathematical
models of neural or cognitive phenomena relevant to psychiatric diseases. The models span
a wide range – from biologically detailed models of neurons or networks to abstract models
describing high-level cognitive abilities of an organism. Psychiatric diseases are conceptualized
either as an extreme of normal function or as a consequence of alterations in parts of the model.

As in computational neuroscience more generally, the building of models forces key concepts to
be made concrete and hidden assumptions to be made explicit. One critical function of these models
in the setting of psychiatry is their ability to bridge between low-level biological and high-level
cognitive features. While many neurobiological alterations are known, the exclusively atheoretical
focus of standard psychiatric nosology on high-level symptoms has as yet prevented an integration
of these bodies of knowledge. David Marr pointed out that models at different levels of description
may be independent (Marr 1982). Nevertheless, algorithmic details may constrain functions at the
computational level. The models used in computational psychiatry make these constraints explicit
and thereby aim to provide normative conduits between the different levels at which neural systems
are analyzed (Stephan et al. 2006; Huys et al. 2011; Hasler 2012; Montague et al. 2012). This in turn
allows for a principled approach to study dysfunctions and indeed may allow the dysfunctions
observed in psychiatry to inform neuroscience in general.

Practically, it underpins hopes that computational techniques may facilitate the development of
a psychiatric nomenclature based on an understanding of the underlying neuroscience. Computa-
tional models enhance experimental designs by allowing more intricate neural and/or cognitive
processes to be inferred from complex features of the data, often via Bayesian inference. These
aspects motivate hopes that it may facilitate the development of clinical treatment and decision tools
informed by advances in neuroscience.

Detailed Description

This entry describes four types of models applied to psychiatric diseases. The earliest models were
connectionist (McClelland et al. 1986) or dynamical (King et al. 1984) and emphasized properties of
the brain as a neural network. The second, and now most common, class is models of reinforcement
learning (Montague et al. 1996; Schultz et al. 1997; Sutton and Barto 1998). The third and fourth
classes emphasize explicit model-based planning or social cognitive processes, respectively.

*Email: qhuys@cantab.net

Encyclopedia of Computational Neuroscience
DOI 10.1007/978-1-4614-7320-6_501-2
# Springer Science+Business Media New York 2014

Page 1 of 10



Connectionist and Neural Network Models
Connectionist approaches model psychological functions using a neural network in which particular
neurons take on specific computational roles, for instance, representing a sensory input. Key aspects
of the neural networks are based on particular features derived from biology (or known to be
involved in psychopathology). This allows the consequences of these features for complex compu-
tation to be probed and hence is one direct approach to examining the link between Marr’s levels. In
psychiatry, connectionist models have been prominently applied to schizophrenia.

Patients with schizophrenia or mania can characteristically display rapidly changing, loose
associations in their speech. Early work examined how parameters governing the dynamics of
associative networks might reproduce this. An increase in noise, corresponding to a decrease in the
dynamic gain, led to less specific memories, mirroring a broadening of associations in schizophre-
nia, and less stable, constantly altering memories, possibly mirroring the pressure of speech
observed in mania. Spurious memories reminiscent of hallucinations arose when overloading the
network with memories beyond its capacity (Grossberg and Pepe 1970; Hoffman 1987).

Patients with schizophrenia also show impairments in cognitive flexibility and control tasks that
require the inhibition of a prepotent response. Cohen et al. (1996) used a connectionist network
partitioned into four modules to model this. One module represented stimuli, another other
responses, and a third the prefrontal cortex. A fourth module integrated the inputs from all modules.
The prefrontal cortex had a critical function in maintaining representations of task-relevant vari-
ables. When this memory function was impaired by a reduction in its gain, the network could
accurately capture the impairments in performance seen in schizophrenia. As the gain was thought to
depend on dopaminergic input, this work correctly predicted a prefrontal reduction of dopamine in
schizophrenia. Later work further refined the role of dopamine in gating of information into the
prefrontal cortex (Braver et al. 1999; Frank 2005).

Many psychiatric disorders are relapsing-remitting, with periods of well-being punctuated by
times of illness. This is prominent in bipolar disorder, which can cycle rapidly between phases of
depression and mania. Conversely, loss of diurnal sleep-wake rhythms is also common. These
phenomena can be described by dynamical systems models of neural networks with feedback loops
and delays interacting to produce oscillatory phenomena at various timescales (Mackey and Milton
1987; Milton 2010). The complexities of the local circuit, with synthesis, breakdown, and reuptake,
can add substantial further complexity and facilitate the emergence of highly variable, chaotic
solutions potentially relevant to multiple disorders (King et al. 1984).

Reinforcement Learning Models
Reinforcement learning (RL; Sutton and Barto 1998) describes a set of techniques aimed at choosing
that action which maximizes the long-term expected reward. In terms of applications to psychiatric
diseases, it is useful to differentiate between two approaches to solving this problem (Daw
et al. 2005): a model-based and a model-free one. In the model-based approaches, the agent has
a model M of the world that describes the consequences of actions and the desirability of the
consequences. For instance, a player may know the rules of chess. The best move can then be
inferred by considering all moves, their consequences, and the subsequent moves iteratively. For
most problems of interest, this model-based decision procedure is computationally unachievable.
Model-free approaches replace computation by experience, maintaining a lookup tableQ s,að Þ of the
expected reward (and hence goodness) of each behavior a in situation s. This can be iteratively
updated online with new experience by computing a prediction error (PE) d which compares the
obtained with the expected future reward Q s, að Þ. This expectation Q s, að Þ can then be updated by
letting Q s, að Þ  Q s, að Þ þ ϵd, where 0 � ϵ � 1 is a learning rate that determines how rapidly the
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qualities are allowed to change over time. That is, rather than inferring decisions from an under-
standing of the world, model-free choices are the result of repeated trial-and-error learning. This
motivates the characterization of habits as model-free (Daw et al. 2005). Seminal work has shown
that phasic signals by dopaminergic neurons are proportional to this PE d (Montague et al. 1996;
Schultz et al. 1997).

The application of reinforcement learning models to psychiatric diseases is motivated by a trio of
facts. First, decisions are central to psychiatric disorders, and reinforcement learning techniques
allow for a principled approach to decision-making. Decisions are the final common pathway
preceding many aberrant behaviors, and poor decisions can have profound consequences for
affected individuals. For instance, around a third of the life stress associated with major depressive
disorder is due to poor decisions by individuals (Kendler et al. 1999). Second, many psychoactive
substances and clinically useful medications influence neuromodulators: dopamine (antipsychotics
such as haloperidol or clozapine and stimulants such as methylphenidate), serotonin (selective
serotonin reuptake inhibitors, tricyclic antidepressants), noradrenaline (tricyclic antidepressants,
serotonin-noradrenaline reuptake inhibitors), or acetylcholine (certain antipsychotics, cholinesterase
inhibitors). Third, and unifying the first two, these same neuromodulators are central to computa-
tional models of decision-making. This is particularly clear for phasic dopamine, which appears to
report a signal akin to the PE d used for learning in model-free RL (Montague et al. 1996; Schultz
et al. 1997; Sutton and Barto 1998).

Predominantly Model-Free RL Accounts of Psychiatric Diseases
The simplest application of reinforcement learning models is in examining anhedonia, a central
component of depression. Anhedonia describes a reduced ability to experience pleasure and is
usually measured by verbal reports. People who report such a lack of pleasure are less likely to
choose the more rewarding stimulus in a variety of standard learning (Costello 1972; Henriques
et al. 1994; Pizzagalli et al. 2005) and stimulus reactivity (Bylsma et al. 2008) tasks. Decisions in
some of these tasks can be captured by simple model-free reinforcement learning. Depression
interferes with this learning by reducing the PE signal d (Steele et al. 2007; Kumar et al. 2008;
Chase et al. 2010a, b; Gradin et al. 2011), leading to reduced expectations of rewards over time. The
PE d is composed of the difference between expected reward and obtained reward, and anhedonia
appears to reduce the former, while alterations of tonic dopamine affect the latter (Chowdhury
et al. 2013; Huys et al. 2013).

Addictive substances release dopamine either directly or indirectly and modify dopamine recep-
tors chronically (Volkow et al. 2009). This might simply suggest that addictive substances thereby
result in overly large values of the drug-taking action by adding an irreducible floor to the PE signal
d. This would result in a persistent signal for learning, increasing the value of drug-taking actions
without bound (Redish 2004; Dayan 2009). Other reinforcement learning models address the
transformation from hedonic to compulsive drug taking (Everitt and Robbins 2005) by emphasizing
the difference between model-free and model-based reinforcement learning (Redish et al. 2008).
Drugs of abuse are known to lead to a shift toward habitual behavior (Dickinson et al. 2000; Nelson
and Killcross 2006), which can be captured by a shift from model-based to model-free decision-
making (Daw et al. 2005). Neurobiologically, this shift might be accompanied by a progressive
engraining of drug-taking actions through progressively more dorsal corticostriatal loops (Belin and
Everitt 2008) and impairments of orbitofrontal function (Lucantonio et al. 2012).

Parkinson’s disease is characterized by a progressive reduction of dopamine-producing cells in
the midbrain and treated with dopamine precursors or agonists. Clinically, it results in a pronounced
slowing (bradykinesia) and experimentally in facilitated learning of action omission compared to
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action production (no-go rather than go learning) that is normalized by dopaminergic medication.
The effects of dopamine on go and no-go learning are accounted for by biologically detailed
computational models of the basal ganglia (Frank 2005). Two critical structural aspects of the
basal ganglia inform these models: (a) the presence of parallel corticobasal ganglia-thalamocortical
loops for go and no-go learning and (b) the prevalence of activating D1-type dopamine receptors on
the go and inhibiting D2-type receptors on the no-go loop (Maia and Frank 2011). Positive prediction
errors are thus linked with go and negative prediction errors with no-go learning (Frank et al. 2007;
Guitart-Masip et al. 2012). Such considerations are also relevant for schizophrenia, Tourette’s
syndrome, and attention-deficit hyperactivity disorder (Maia and Frank 2011). The work on
Parkinson’s disease is remarkable in that it has informed understanding of the function of the
basal ganglia and dopamine in the healthy brain.

Finally, dopamine also plays a particular role in schizophrenia research because (a) the positive
symptoms of psychosis respond to dopaminergic D2 antagonists such as haloperidol (Seeman
et al. 1976; Kapur et al. 2000; Laruelle et al. 2003) and because of (b) findings of increased
dopamine synthesis, release, and synaptic levels in psychotic states (Heinz 2002; Kapur 2003)
from the first episode onward (Egerton et al. 2013). Model-free reinforcement learning models that
link phasic dopamine to prediction error signals have been instrumental in relating the dopaminergic
dysfunctions to cognitive phenomena. They have provided detailed accounts of the effects of
dopamine manipulations on both learning and expression of learned contingencies in preclinical
animal models such as the conditioned avoidance response and latent inhibition (Smith et al. 2004,
2005, 2007; Moutoussis et al. 2008). In humans, reinforcement learning models of decision-making
have been combined with fMRI to examine the correlates of putatively dopaminergic PEs. Schizo-
phrenia patients have a reduced response to prediction errors in striatal and midbrain regions (Juckel
et al. 2006; Corlett et al. 2007; Jensen et al. 2008; Murray et al. 2008) that is normalized by treatment
with second-generation antipsychotic medications (Juckel et al. 2006).

Passivity phenomena are another important characteristic feature of schizophrenia, where move-
ments or sensations are experienced as not originating from oneself. Incorrect expectations about the
consequences of one’s own actions may lead to the assignment of the sensory consequences of one’s
own actions to external sources (Gray et al. 1991; Fletcher and Frith 2009). This may arise from an
impaired connectivity between areas generating the predictions and those assessing the input (Ford
et al. 2007), speaking to a generalized notion of PEs that is less directly related to phasic dopami-
nergic prediction errors (Rao and Ballard 1999) but rather to the consequences of dopamine in
modulating synaptic plasticity (Friston and Frith 1995; Stephan et al. 2006; Friston 2008; Stephan
et al. 2009).

Predominantly Model-Based Accounts of Psychiatric Diseases
Higher-level cognitive aspects of psychiatric diseases are captured by reinforcement learning
models in which decisions are the product of searching an explicit model of the task at hand.
These have been applied to the concept of helplessness in depression, to the role of serotonin, and to
delusional belief formation in schizophrenia.

In depression research, the concept of helplessness – a perception of lack of control – arose from
animal behavior and describes animals who fail to escape from shocks after experiencing other
stressors that were not under their control (Seligman and Maier 1967). Similar findings exist in
humans (e.g., Miller and Seligman 1975). The simplest mathematical formulation of controllability
is as a low action-outcome contingency p(o|a) (Maier and Seligman 1976). More detailed accounts
view controllability as relating not to individual available actions but to the average achievability of
different outcomes by different choices of actions (Dayan and Huys 2009). This definition is close to
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the definition of control in control systems theory. The psychological construct whereby controlla-
bility is related to particular desirable outcomes can be captured by defining controllability as the
fraction of rewards reliably achievable through appropriate action selection (Dayan and Huys 2009).
These definitions of controllability can be used as prior beliefs and thereby account qualitatively for
learned helplessness and chronic mild stress (Willner 1997) effects (Dayan and Huys 2009). Further
refinements accounting specifically for generalization issues and for the computational costs of goal-
directed decisions allow for more quantitatively detailed accounts (Lieder et al. 2013).

Serotonin plays an important role in research on depression because selective serotonin inhibitors
(SSRIs) are first-line pharmacotherapeutic agents (Gelder et al. 2006) and because dietary manip-
ulations that are thought to acutely reduce serotonin (acute tryptophan depletion) can lead to a rapid
recurrence of symptoms in formerly depressed patients (Smith et al. 1997). However, animal work
has related increased serotonin to behavioral inhibition, aversive expectations, and expression of
helplessness (Soubrié 1986; Maier and Watkins 2005), suggesting that a reduction in serotonin
should improve depressive symptoms. Reinforcement learning models have linked the inefficient
avoidance of negative events due to serotonin in a model-free system with an increased exposure to
more negative events. These experiences might in turn underlie more negative moods due to
serotonin reductions (Dayan and Huys 2008; Boureau and Dayan 2011; Dayan 2012). Further
work has characterized the interaction of this model-free behavioral inhibition with internal cogni-
tive planning models and has suggested that serotonin might also inhibit internal thought processes.
This would be instrumental in facilitating planning by pruning overly large decision trees to
a computationally manageable size (Huys et al. 2012). While serotonin is also central to helpless-
ness, this computational relationship has not yet been examined.

“Jumping to conclusions” is a phenomenon that aims to capture delusional belief formation. It
describes a tendency for patients with paranoid ideation to declare a strongly held belief based on
data that should not be sufficient to warrant such strong beliefs (Garety et al. 2005). However,
a model-based reinforcement learning model of the standard task used to measure jumping to
conclusions (the “beads-in-a-jar” task) suggested that the reason patients with schizophrenia jumped
to conclusions was not due to aberrantly strong beliefs but due to taking into account their future
inability to exploit further data (Moutoussis et al. 2011).

Game-Theoretical Approaches to Social Dysfunction
Psychiatric disorders have a profoundly detrimental effect on social function. Social interactions are
extremely complex and therefore difficult to investigate directly. Game-theoretical approaches allow
interpersonal cognition to be probed parametrically because the social communication channel is
highly restricted yet functional. Economic games benefit from having been extensively examined
both theoretically and experimentally in economics (Camerer 2003).

Borderline personality disorder (BPD), which is characterized by unstable personal relationships
and inappropriate emotional responses, leads to a breakdown of cooperation in trust tasks. In this
task, the first participant (the investor) chooses which fraction of an endowment to invest. The
investment is multiplied, and the trustee chooses what fraction of the multiplied amount to return to
the investor. When played over multiple rounds, both players are best off when they cooperate (i.e.,
when the investor invests and the trustee faithfully returns a substantial fraction). However, this
cooperation is easily broken. Healthy participants maintain cooperation by repairing lost trust
through signals (e.g., by investing a large fraction to signal willingness to cooperate; King-Casas
et al. 2005). Patients with BPD fail to recognize social signals used to repair social bonds after
temporary ruptures, potentially due to a failure of the insula to respond (King-Casas et al. 2008).
Autistic spectrum disorder (ASD) on the other hand does not affect the maintenance of cooperation
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in the trust task, but the cingulate cortex does not tag “self”-responses accurately (Tomlin et al. 2006;
Chiu et al. 2008). In related cooperative games (e.g., the “stag hunt” game), ASD patients have a less
rich representation of the other’s strategic abilities (Yoshida et al. 2008, 2010a, b). Responses of
healthy volunteers to patients with a variety of psychiatric disorders in the trust task fall into
distinguishable classes (Koshelev et al. 2010). This might allow the use of healthy volunteers as
“biosensors” and formalizes one important aspect and use of empathy or even countertransference in
psychiatric clinical practice. Formally, these tasks are partially observable Markov decision prob-
lems and can be modeled as such (Yoshida et al. 2008; Ray et al. 2009).

Limitations
Computational approaches to psychiatric disorders focus on decision-making, valuation, and cog-
nition. While this is critical to many psychiatric disorders, immunological, endocrine, or vegetative
dysfunctions are so far largely beyond these accounts.
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