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Computational psychiatry is an emerging field that examines phenomena in mental illness using 

formal techniques from computational neuroscience, mathematical psychology and machine 

learning (1–6). These techniques can be used in a theory-driven manner to gain algorithmic 

insight into neural or cognitive processes and in a data-driven way to identify predictive and 

explanatory relationships in complex datasets. The approaches complement each other: theory-

driven models can be used to infer mechanisms, and the resulting measurements can be used 

in data-driven approaches for prediction. Data-driven algorithms can be used to answer theory-

driven questions and pose quantitative problems requiring theoretical analysis. Recent 

computational studies have successfully described and measured novel mechanisms in a range 

of disorders (7–11), and have identified novel predictors of treatment response (12, 13). These 

methods hold the potential to improve identification of relevant clinical variables, and could be 

superior to classification based on traditional behavioral or neural data alone (14–17). However, 

these promising results have been slow to influence clinical practice or to improve patient 

outcomes. 

In February 2019 a workshop was convened at the Banbury Centre at Cold Spring Harbor, NY. 

The purpose of the meeting was to identify key developments required in the practice and 

infrastructure of computational psychiatry research to accelerate its ability to address real world 

clinical problems in the near future. This report provides a summary of the conclusions of the 

meeting. At its core are suggestions to improve the measurement properties of computational 

assays through a rapid, iterative process that leverages coordinated waves of online and clinical 

testing, followed by deployment of the assays in innovative study designs to address clinically 

relevant questions. We particularly focus on theory-driven tasks but, where possible, the 

potential of data-driven approaches is also highlighted. Finally, the report suggests that for the 

promise of computational psychiatry to be realized, the research environment must be 

developed to encourage large-scale, collaborative, interdisciplinary consortia. 



We first summarize the need for computational assays with improved measurement properties 

and describe an iterative optimization and validation procedure by which such assays may be 

developed and deployed in clinically informative studies. We then consider broader adaptations 

to the research environment that may accelerate the translation of these techniques. 

Computational assays for clinical applications – what 

is missing from current research practice? 

Measurement 

A key application of computational assays is the estimation of latent behavioral and cognitive 

variables that underlie clinical observations and measurements. Theory-driven approaches rely 

extensively on generative models i.e., formal descriptions of the underlying neural and mental 

processes that are believed to generate empirical observations (see 18 for an example). Fitting 

generative models to observations has a number of potential advantages. First, it may allow 

identification and measurement of processes not easily captured by traditional analysis (19), 

second generative models may improve the validity and reliability by which a process is 

measured. For instance, generative models can describe, and hence be informed by, latent 

constructs that tie different features (e.g. reaction time and choice) and modalities (e.g. behavior 

and physiology) together in a holistic manner (20–23). They also allow artificial data to be 

simulated and therefore a degree of measurement optimization to occur in silico before the 

assay is deployed in practice (see Table 1 for details). However, these features do not by 

themselves guarantee that computational assays provide reliable and valid measures of 

underlying processes. Rather, the measurement properties of an assay must be assessed and 

iteratively optimized (see Table 1 for a summary of computation-specific and general metrics of 



reliability and validity). Though there are notable exceptions (24–27) the issue of measurement 

in computational psychiatry has not yet attracted due attention. A principled and efficient 

process of assay development that optimizes measurement properties from the outset is a key 

outcome of the proposed framework described below. 

Deployment                                                

Beyond questions of measurement, a second crucial factor in translating computational assays 

to clinical application is the deployment of the assays in studies that are able to address 

clinically useful questions. While cross-sectional designs can be used to assess associations 

between symptoms and computational processes, they provide relatively limited information on 

the clinical utility of an assay. Alternative study designs which test the degree to which an assay 

provides predictive information useful to clinical decision-making, or the causal relationships 

between computationally measured processes and symptoms are likely to be particularly 

important here. Data-driven techniques are particularly well suited to deployment in predictive 

studies. 

Developmental pipeline for clinically useful 

computational assays 

Here we outline a potential, and necessarily collaborative, framework by which promising 

computational assays, arising from prior clinical, pre-clinical or theoretical work, may be 

efficiently developed, validated and deployed to address clinically interesting questions (Figure 

1). 



Establishing and optimizing the measurement 

characteristics of novel assays 

Step 1: Assay optimization 

First, the important measurement factors of the assay required to address a specific clinical 

question are selected and then the structure of the assay is altered to optimize these. Table 1 

outlines a non-exhaustive list of important metrics. The selected factors may include both 

specific computational properties such as parameter identifiability (see Table 1) as well as 

practical features of an assay (e.g. duration to complete, complexity etc) and clinical validity 

(e.g. correlation with symptoms or treatment response). An objective function, constructed to 

reflect the specific priorities of a research project including factors to maximize (e.g. sensitivity 

to manipulations of key task variables, compliance, parameter identifiability) and minimize (e.g. 

task duration) may then be formalized in which several factors are combined to produce a single 

metric of measurement performance. The assay may then be optimized by iterative testing 

either in silico (Table 1), using high-throughput online data collection (28) or if necessary in 

more deeply phenotyped clinical populations. Here, optimization occurs by systematically 

varying aspects of the assay’s configuration (e.g., number of trials per condition, timing of 

stimulus presentation, reward incentives) in order to maximize the objective function. In some 

cases, this may also include hand-designed qualitative changes (e.g. to improve the task 

instructions used). Optimization of data-driven approaches may follow a similar trajectory with, 

for example, the data features being passed to a classifier that is optimized in terms of the 

predictive validity of the classifier or the practicality of collecting the data. 

Step 2:  Latent structure validation 



Although individual model parameters may underlie specific neurocognitive processes, key 

constructs of clinical relevance are likely to consist of a latent structure of relations between 

multiple such parameters within or across tasks (14, 29). A useful step is therefore to describe 

this structure by collecting data from a range of related assays within a single population of 

participants. Data-driven techniques such as clustering, latent class analysis or theory-driven 

techniques such as broader generative modelling approaches can be used to determine the 

latent structure of the assays. Identified latent structures can be fed back to step 1 to inform the 

further development of the assays, with the best performing (in terms of the metrics described in 

Table 1) being further deployed as described below. 

Deployment: Establishing the potential of assays as 

predictors, targets and mediators 

Next, the potential clinical utility of assays can be tested in proof-of-concept studies examining 

the predictive ability of the assay and/or the causal relationship between the process measured 

by the assay and clinically important outcomes such as symptoms. 

Step 3a: Clinical prediction and covariation 

Longitudinal observational studies may be used to assess whether an assay covaries with 

mental state changes or traits of interest and whether it has predictive validity, for example by 

predicting response to treatment (12). The ability of cohort studies to map the development of 

psychiatric symptoms may be enhanced by innovative study designs such as longitudinal yet 

brief “natural challenge” studies (30) which make use of patient and healthy cohorts likely to 

encounter precipitative events expected to result in a change in psychiatric status (for example, 

patients with an established mental illness starting a new treatment). 



Prediction analyses will typically involve a combination of theory-driven and data-driven 

analysis, with data-driven analyses used to establish the most powerful predictors (12, 31) and 

to address issues of dimensionality reduction as described for latent structure validation above. 

Parameters derived from computational assays may be used as any other variable in data-

driven analyses. 

Step 3b: Causality and treatment targets 

A second route by which computational assays may impact clinical practice is if the process 

measured by the assay constitutes a viable treatment target. That is, treatments may be 

developed specifically to alter the computationally defined process. This question hinges 

crucially on the causal relationship between the measured process and clinically relevant 

outcomes such as symptoms or functioning. Causality is most efficiently addressed using 

experimental medicine designs which manipulate the underlying, computationally measured, 

process and then assess the consequences of the manipulation on intermediate or clinical 

outcomes (where this is not possible, quasi-experimental designs may also be useful (32)). 

Potential manipulations may be selected from one or more pharmacological, brain stimulation, 

cognitive or psychotherapeutic technique, the key issue being the ability of the intervention to 

engage with and alter the computationally measured process. 

Step 4: Clinical efficacy 

Regardless of whether the goal of using a computational assay is to predict a clinically relevant 

outcome or to guide the development of a novel treatment, the efficacy of computationally 

informed approaches must ultimately be assessed in clinical trials. Such trials may, for example, 

randomly assign patients to be treated according to a predictive algorithm or standard 

treatment, or to receive a computationally informed intervention vs. a control.  

 



In summary, these four steps describe a general pipeline of clinical computational assay 

optimization designed to yield reliable and valid assays that can be deployed in clinically 

informative study designs. 

Evolution of the research environment 

Computational assays can be applied to pre-existing datasets (33–35), and the sharing of 

relevant datasets and analytic procedures is clearly of great importance. However, going 

forward, the process of computational assay development and deployment outlined above 

requires substantial structural resources well beyond those of individual laboratories. At the very 

least, this includes shared core infrastructure, particularly in the domain of information 

technology. It will necessitate common data structures, which include meta-data relevant to 

measures, models and populations, and common ascertainment procedures across sites that 

enable individual labs to collect high-quality behavioral and clinical data and, where relevant, 

physiological or biological data from both public and clinical settings in a universal format (36). 

Curation of the data will be required to ensure that it is findable, accessible, interoperable and 

reusable from the outset. Due to rising concerns about data security on the one hand and the 

need to provide scientists access to data on the other, the secure storage and aggregation of 

data across sites using a platform which itself may support data analysis, is likely to be essential 

(37). 

Finally, the complexity of the human mind, the diversity of processes of clinical relevance as 

well as the range of computational theories and interventions also represent a formidable 

intellectual challenge. It calls for a pooling of multiple strands of expertise and perspectives 

which can be achieved in appropriately designed multidisciplinary consortia distributed across 

laboratories that have a common goal and share data and expertise. Although it is beyond the 

scope of this paper to specify the precise nature and scope of such consortia we suggest that 



they are likely to benefit from the inclusion of, at least, expert clinicians, experimentalists and 

theoreticians. 

Conclusion 

If computational methods are to deliver real advances for patients, we must ensure our 

approaches are reliable, robust, and address clinically meaningful questions. In this opinion 

paper we outline processes to improve the measurement properties and deployment of 

computational assays and highlight the importance of interdisciplinary collaboration. 

  



Acknowledgements 

The Banbury Centre Meeting was funded by grants from the Society for Biological Psychiatry; 

The William K. Warren Foundation; and The Carney Institute for Brain Science at Brown 

University. We thank Prof John Krystal, Prof Bruce Cuthbert, Prof Anne Churchland and Dr 

Michele Ferrante for invaluable discussion and advice. 

Disclosures 

MB has received travel expenses from Lundbeck for attending conferences and acted as a 

consultant for Jansen Research and CHDR. CHC is a full-time employee of Hoffman La Roche. 

JTB has received consulting fees from Pear Therapeutics, BlackThorn Therapeutics, Niraxx 

Therapeutics, and AbleTo, Inc. PD is funded by the Max Planck Society. AMC holds equity in 

Spring Care Inc, Fitbit Inc, and UnitedHealthcare Inc; is lead inventor on three patent 

submissions relating to treatment for major depressive disorder [a) USPTO docket number 

Y0087.70116US00, b) USPTO. Provisional Appl. No. 62/491,660, and c) USPTO. Provisional 

Appl. No. 62/629,041]; and has consulted for Fortress Biotech on antidepressant drug 

development. JMM is supported by the Wellcome Trust under grant number WT102845/Z/13/Z.  

Over the past 3 years, DAP has received consulting fees from Akili Interactive Labs, BlackThorn 

Therapeutics, Boehringer Ingelheim, Compass, Posit Science, and Takeda Pharmaceuticals 

and an honorarium from Alkermes for activities unrelated to the current review. JPR has acted 

as a consultant for Cambridge Cognition, Takeda, and GE Healthcare. KES is funded by the 

René and Susanne Braginsky Foundation. MJF is a consultant for Hoffman La Roche. MLP is 

an advisor to Spring Care, Inc., a behavioral health startup, he has received royalties for an 

article about methamphetamine in Uptodate and he has received support from the National 

Institute of General Medical Sciences (P20GM121312, Paulus). Over the past three years, MLP 



received an honorarium from Sunovion Pharmaceuticals. HDO has acted as a consultant for 

Lundbeck pharmaceuticals.   

References: 

1. Huys QJM, Maia TV, Paulus MP (2016): Computational Psychiatry: From Mechanistic 

Insights to the Development of New Treatments. BPS: CNNI. 1: 382–385. 

2. Montague PR, Dolan RJ, Friston KJ, Dayan P (2012): Computational psychiatry. Trends 

Cogn Sci. 16: 72–80. 

3. Paulus MP, Huys QJM, Maia TV (2016): A Roadmap for the Development of Applied 

Computational Psychiatry. BPS: CNNI. 1: 386–392. 

4. Stephan KE, Binder EB, Breakspear M, Dayan P, Johnstone EC, Meyer-Lindenberg A, et al. 

(2016): Charting the landscape of priority problems in psychiatry, part 2: pathogenesis 

and aetiology. Lancet Psychiatry. 3: 84–90. 

5. Wang X-J, Krystal JH (2014): Computational psychiatry. Neuron. 84: 638–654. 

6. Kishida KT, King-Casas B, Montague PR (2010): Neuroeconomic approaches to mental 

disorders. Neuron. 67: 543–554. 

7. Browning M, Behrens TE, Jocham G, O’Reilly JX, Bishop SJ (2015): Anxious individuals have 

difficulty learning the causal statistics of aversive environments. Nat Neurosci. 18: 590–

596. 

8. Collins AGE, Albrecht MA, Waltz JA, Gold JM, Frank MJ (2017): Interactions Among Working 

Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm 

and Selective Deficits in Schizophrenia. Biol Psychiatry. 82: 431–439. 

9. Huys QJM, Pizzagalli DA, Bogdan R, Dayan P (2013): Mapping anhedonia onto 

reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord. 3: 12. 



10. Powers AR, Mathys C, Corlett PR (2017): Pavlovian conditioning-induced hallucinations 

result from overweighting of perceptual priors. Science. 357: 596–600. 

11. Lawson RP, Mathys C, Rees G (2017): Adults with autism overestimate the volatility of the 

sensory environment. Nat Neurosci. 20: 1293–1299. 

12. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. (2016): 

Cross-trial prediction of treatment outcome in depression: a machine learning approach. 

Lancet Psychiatry. 3: 243–250. 

13. Harlé KM, Stewart JL, Zhang S, Tapert SF, Yu AJ, Paulus MP (2015): Bayesian neural 

adjustment of inhibitory control predicts emergence of problem stimulant use. Brain. 138: 

3413–3426. 

14. Wiecki TV, Poland J, Frank MJ (n.d.): Model-based cognitive neuroscience approaches to 

computational psychiatry clustering and classification. Clinical Psychological Science: A 

Journal of the Association for Psychological Science. 3: 378–399. 

15. Huys QJM, Maia TV, Frank MJ (2016): Computational psychiatry as a bridge from 

neuroscience to clinical applications. Nat Neurosci. 19: 404–413. 

16. Wiecki TV, Antoniades CA, Stevenson A, Kennard C, Borowsky B, Owen G, et al. (2016): A 

Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS ONE. 

11: e0148409. 

17. Brodersen KH, Schofield TM, Leff AP, Ong CS, Lomakina EI, Buhmann JM, Stephan KE 

(2011): Generative embedding for model-based classification of fMRI data. PLoS 

Comput Biol. 7: e1002079. 

18. Behrens TEJ, Woolrich MW, Walton ME, Rushworth MFS (2007): Learning the value of 

information in an uncertain world. Nat Neurosci. 10: 1214–1221. 

19. Pulcu E, Browning M (2017): Affective bias as a rational response to the statistics of 

rewards and punishments. Elife. 6. doi: 10.7554/eLife.27879. 



20. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. (2010): Research 

domain criteria (RDoC): toward a new classification framework for research on mental 

disorders. Am J Psychiatry. 167: 748–751. 

21. Hedge C, Powell G, Bompas A, Vivian-Griffiths S, Sumner P (2018): Low and variable 

correlation between reaction time costs and accuracy costs explained by accumulation 

models: Meta-analysis and simulations. Psychol Bull. 144: 1200–1227. 

22. Price RB, Brown V, Siegle GJ (2019): Computational Modeling Applied to the Dot-Probe 

Task Yields Improved Reliability and Mechanistic Insights. Biol Psychiatry. 85: 606–612. 

23. Kessels RPC (2019): Improving precision in neuropsychological assessment: Bridging the 

gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. 

Clin Neuropsychol. 33: 357–368. 

24. Moutoussis M, Bullmore ET, Goodyer IM, Fonagy P, Jones PB, Dolan RJ, et al. (2018): 

Change, stability, and instability in the Pavlovian guidance of behaviour from 

adolescence to young adulthood. PLoS Comput Biol. 14: e1006679. 

25. Shahar N, Hauser TU, Moutoussis M, Moran R, Keramati M, NSPN consortium, Dolan RJ 

(2019): Improving the reliability of model-based decision-making estimates in the two-

stage decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol. 

15: e1006803. 

26. Hedge C, Powell G, Sumner P (2018): The reliability paradox: Why robust cognitive tasks do 

not produce reliable individual differences. Behav Res Methods. 50: 1166–1186. 

27. Enkavi AZ, Eisenberg IW, Bissett PG, Mazza GL, MacKinnon DP, Marsch LA, Poldrack RA 

(2019): Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc 

Natl Acad Sci USA. 116: 5472–5477. 

28. Gillan CM, Daw ND (2016): Taking Psychiatry Research Online. Neuron. 91: 19–23. 

29. Poldrack RA, Yarkoni T (2016): From Brain Maps to Cognitive Ontologies: Informatics and 

the Search for Mental Structure. Annu Rev Psychol. 67: 587–612. 



30. Clarke P, MacLeod CM, Shirazee N (2008): Prepared for the worst: Readiness to acquire 

threat bias and susceptibility to elevate trait anxiety. Emotion. 8: 47–57. 

31. Calhoun VD, Lawrie SM, Mourao-Miranda J, Stephan KE (2017): Prediction of Individual 

Differences from Neuroimaging Data. Neuroimage. 145: 135–136. 

32. Marinescu IE, Lawlor PN, Kording KP (2018): Quasi-experimental causality in neuroscience 

and behavioural research. Nat Hum Behav. 2: 891–898. 

33. Etkin A, Patenaude B, Song YJC, Usherwood T, Rekshan W, Schatzberg AF, et al. (2015): 

A cognitive-emotional biomarker for predicting remission with antidepressant 

medications: a report from the iSPOT-D trial. Neuropsychopharmacology. 40: 1332–

1342. 

34. Trivedi MH, McGrath PJ, Fava M, Parsey RV, Kurian BT, Phillips ML, et al. (2016): 

Establishing moderators and biosignatures of antidepressant response in clinical care 

(EMBARC): Rationale and design. J Psychiatr Res. 78: 11–23. 

35. Auchter AM, Hernandez Mejia M, Heyser CJ, Shilling PD, Jernigan TL, Brown SA, et al. 

(2018): A description of the ABCD organizational structure and communication 

framework. Dev Cogn Neurosci. 32: 8–15. 

36. Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capotă M, Chakravarty MM, et al. 

(2017): BIDS apps: Improving ease of use, accessibility, and reproducibility of 

neuroimaging data analysis methods. PLoS Comput Biol. 13: e1005209. 

37. Smucny J, Barch DM, Gold JM, Strauss ME, MacDonald AW, Boudewyn MA, et al. (2019): 

Cross-diagnostic analysis of cognitive control in mental illness: Insights from the 

CNTRACS consortium. Schizophr Res. . doi: 10.1016/j.schres.2019.01.018. 

38. Wilson RC, Collins A (2019): Ten simple rules for the computational modeling of behavioral 

data. preprint, PsyArXiv. doi: 10.31234/osf.io/46mbn. 

 
  



  
  
  



Table 1: Key Metrics of Reliability and Validity Relevant to Computational Measures (see also 
38 for a summary) 

Specific Computational Measures of Reliability 

Parameter recovery, 
identifiability and sensitive 
range 

Parameter recovery is a process of validating 
parameterized generative models of behavior and/or neural 
data. It is performed in silico. A range of different parameter 
values are selected. These parameters are then used in the 
generative model to create synthetic data (at a realistic level 
of observation noise) which is passed back into the 
parameter estimation process; finally the recovered 
parameters are compared with the originals. The absolute 
difference between recovered and original parameters 
provides a measure of the ability of a task to estimate model 
parameters (if we can assume participant data can be 
described using a specific model), with smaller values being 
preferred. Parameter identifiability is a similar metric 
describing the degree to which model parameters exert 
distinct effects on the data and thus the degree to which 
differences in data can be confidently attributed to specific 
parameters. Parameter recovery and identifiability will 
generally not be constant over all parameter values (e.g. a 
very low inverse temperature will produce random 
behaviour to the detriment of recovery/identifiability of the 
other parameters of the model) and thus it is often useful to 
define the sensitive range of the parameters—the range of 
values over which parameter recovery and identifiability are 
achievable. 

Model recovery Model recovery assesses the degree to which a particular 
task can discriminate between different classes of 
generative models. This is achieved in silico by generating 
synthetic data using different models and then testing 
whether the process of model selection (see below) 
identifies the correct generative model. As for parameter 
recovery/identifiability, this can depend sensitively on the 
ranges of parameters used to generate the synthetic data. 



Model selection Where more than one model may be used to describe 
subject data, a process of model selection is used to select 
the “best” model. This process typically assesses the 
balance between the “fit” of the model (the degree to which 
the model can explain the data) and model complexity (i.e. 
its representational richness or flexibility to fit data in 
general). If two models explain the data similarly well, the 
simpler is preferred (Occam’s razor). Taking into account 
the fit/complexity trade-off is important since models with 
higher complexity (e.g. with more parameters) will have 
higher accuracy than simpler models but may be capturing 
measurement-specific noise (“overfitting”). Model selection 
may also concern the qualitative ability of the model to 
recapitulate some important features of the data. While 
many computational studies select a single, best model for 
all participants and compare model parameters between 
participants, it is also possible to assess whether 
participants differ in the model which best describes their 
data. The finding that data from different participants are 
best described by different models may in itself be 
interesting and may be described using an hierarchical 
model in which a higher level selects between separate 
lower level models (note that, in the absence of a single 
model used across all participants, between subject 
comparison of model parameters is not straightforward). 

Common Measures of Reliability 

Test-retest The degree to which the measures of individuals within a 
group maintain a consistent relationship across time is 
assessed by test-retest reliability. Test-retest performance 
is a critical metric for tasks which are required to measure 
stable, trait-like, within-subject, processes, and for studies 
using correlational or longitudinal designs. 

Split-half/interrater reliability Other forms of reliability such as split half reliability or 
interrater reliability estimate measurement variability and 
may be useful in certain computational tasks.  



Common Measures of Validity 

Clinical validity Evidence for the clinical validity of a measure is provided 
by associations between it and clinically important outcomes 
such as symptom scores, treatment response or illness 
course. 

Convergent/divergent 
validity 

The degree to which a measure of a construct correlates 
with other measures of the same construct (convergent 
validity) and differs from measures of other constructs 
(divergent validity). These metrics therefore provide an 
assessment of how certain we can be that we are 
measuring an underlying construct (convergent validity) 
and the degree to which our measure provides the 
same/different information to alternative measures 
(divergent validity). Questions of convergent and divergent 
validity have largely been overlooked in computational 
psychiatry. As a result, it is not clear, for example, whether 
learning rates for positive outcomes in the plethora of 
available reward learning tasks measure the same thing. 

Face and ecological validity This reflects the degree to which a measurement appears to 
subjectively measure a process (face validity) and the 
degree to which it captures real life processes (ecological 
validity). Computational approaches are able to 
decompose the components of complex processes and may 
therefore facilitate the development of more ecologically 
valid measures of complex real-life interactions. 

Practical Characteristics of the Measure 

Measure duration, 
complexity and cost 

These summarise key practical costs of a measure which 
are essential when considering how it may be optimised for 
a particular study or population. 

Translational Relevance of the Measure 



Cross species translational 
potential of the task 

Depending on the specific question being addressed, the 
potential for a behavioral measure to be deployed in non-
human species may be relevant for measurement selection. 
For example, validation of the ability of a computational 
assay to infer physiological mechanisms may require a 
degree of experimental control that cannot be achieved in 
humans. 

  
  
  
  



Figure 1: A suggested Process by which Computational Measures may be Optimized for 
Deployment in Clinical Studies 
  
  

 


