
C H A P T E R

10

Bayesian Approaches to
Learning and Decision-Making

Quentin J.M. Huys1,2
1University Hospital of Psychiatry, Zürich, Switzerland; 2University of
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10.1 INTRODUCTION

Learning and decision-making are highly intertwined processes. While
learning influences what decisions are taken, the decisions taken deter-
mine what will be learned. Jointly, they serve the purpose of optimizing
behavior and a breakdown in either will upset the functioning of the
other. This vicious circle is often seen in mental illness, where poor de-
cisions in mental illness lead to the self-selection of individuals into high-
risk situations (Kendler et al., 1999) and thereby likely to more mental
illness.

In this chapter, we will consider a series of approaches to the guidance
of behavior. Some, mostly from Reinforcement Learning (RL; Sutton and
Barto, 1998) involve “learning,” while others, from the related field of
Dynamic Programming, are more akin to inference (Bertsekas and
Tsitsiklis, 1996). The key aspect to consider is that actions taken now do
not just have rewarding or punishing consequences now, but also in the
future. For instance, theft may lead to a short-term gain, but in the longer
term may well lead to very significant losses that far outweigh the short-
term gains. Identifying optimal behaviors at any one point in time,
therefore, requires thinking ahead and considering the various possible
consequences of any current behavior. This, however, is extremely diffi-
cult: first, the list of possible things that may happen in the future is vast,
and second, the future is uncertain. RL is a field with a host of techniques
for taking long-term outcomes into account when making decisions.

This chapter will first introduce so-called Markov Decision Problems
(MDPs) and their solutions formally. In a second part, it will give the
reader tools to use these models to examine choice behavior. In a third
part, we will examine a few specific models as examples of decision-
making in health and illness. In the following, we focus on the key con-
cepts and omit a number of important details for the sake of simplicity.
The interested reader is referred to Bertsekas and Tsitsiklis (1996) and
Sutton and Barto (1998) for accessible but more in-depth treatments.
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10.2 MARKOV DECISION PROBLEMS

Fig. 10.1A shows the general MDP setup that underlies RL and Dy-
namic Programming methods. An MDP is defined by five components
that we will briefly introduce below:

• set of states s˛S
• set of actions a˛A and an associated set of action transition

matrices T a

• reward function R
• policy p

The intuition is that an agent is in some particular state s. In this state,
the agent can perform certain actions a. Depending on the environment,
this leads to a new state s0 and a reinforcement r, which can be positive or

FIGURE 10.1 (A) The setting. An agent interacts with an environment by choosing ac-
tions which result in rewards and in turn influence its current state. (B) Grid world example.
Each square in the grid is a different state s. The state of the agent is indicated by a green

square, i.e., it is roughly in the middle of the grid. Actions correspond to moving around
on this grid. In this example, the agent can move to all adjacent squares, i.e., has 8 actions
available in each state (exemplified by the black arrows emerging from the green square in
the middle). Some states lead to losses, here indicated by the color red, and some to gains,
here indicated by yellow. A policy assigns each state preferences for particular actions.
The aim is to find an optimal policy, i.e., one that maximizes long-term rather than just
immediate reward. (C) Simple linear state space with two actions. While the red action
“right” is deterministic and thus has only 0s and 1s in the transition matrix (D), the green
action left is probabilistic, corresponding to a transition matrix with off-diagonal terms (E).
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negative. Fig. 10.1B shows a more specific example: a so-called grid
world, where the state is simply the position on the grid.

The techniques described below will typically focus on simple defini-
tions of states within particular experiments, where the relevant states can
simply be the stimuli presented during the experiment. However, the
notion of state s in RL is potentially very broad. In neuroscience terms, it
could include internal states such as arousal or hunger, and as such is
clearly a very complex construct.

The actions a are defined in terms of their impact on states. In Fig. 10.1C,
the action “going left” is defined in terms of moving from any one state to
its left neighbor. More generally, actions are defined in terms of probability
distributions over successor states (Fig. 10.1D and E). Putting all state
succession probabilities for one action, next to each other, into one matrix
results in the transition matrix T a for that action (Fig. 10.1D and E). This
describes the consequences of emitting that action in each of the existing
states; it is generally assumed that the transition matrices are fixed and
determined by the world, though they may not be known to the agent.

This definition of actions has an important consequence for how states
are defined: The consequences of actions must depend only on the current
state, and not on past states. Consider braking when driving a car. The
impact of braking depends not only on the position of the care, but also on
its speed. Hence, the impact of braking on transitions to other states
cannot be described purely in terms of the current position. For the
techniques below to apply, the problem must be a so-called MDP. For this
to be true, speed should be part of how states are defined in the car
example, such that the consequence of braking is clearly defined for each
state independent of what the previous states were.

The reward r is a scalar, i.e., a unidimensional number that takes on
positive or negative values for rewards and losses, respectively. The
richness of real rewards is captured by the dependence on actions and
state transitions: Rewards r are generated by a reward function R

�
s; a; s

0�
that depends both on the action taken, and the current and next states. Just
like ingesting food is rewarding when hungry but not when sated, taking
a step to the right can lead to a loss in states left of the red punishing
barrier in Fig. 10.1, and to reward when left of the yellow reward area. Just
like the transition matrices T , the reward function R is assumed to be a
fixed part of the environment, though again it may not be known to the
agent. The agent’s estimates of the transition matrices and the reward
function are referred to as the agent’s model M of the world.

The aim is to find an optimal policy p*(a; s). A policy p(a; s) describes
the probability of taking an action a in state s. A policy is optimal if it
always chooses one of the optimal actions in each state, where the optimal
action is the one that maximizes the total sum of rewards that can be
earned in the long term. Conceptually the simplest approach to infer the
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optimal policy is to consider all possible actions from a state; all the
resulting state transitions and rewards; then all possible next actions for
the successor states, etc. This results in a decision tree, with the root at the
current state (Fig. 10.2). Unfortunately, these decision trees grow rapidly
in size. For the simple grid world example, the number of actions and
successor state to each state is 9 (disregarding the boundaries), and hence
the decision tree corresponding to looking d steps ahead has 9d branches.
Such an explicit tree search is hence prohibitive for all but the very
simplest of problems.

10.2.1 Bellman Equation

Optimal, in RL, is defined in terms of achieving the maximal expected
sum over rewards rt0 in the future, i.e., for times t0 � t. The expected total
future reward from state s at time twhen following a particular policy p is
called the value VpðsÞ of the state and defined as:

VpðstÞ ¼ E

"XN
t0¼0

rtþt0g
t
0
����st;p

#
(10.1)

where the discounting factor 0 � g < 1 is not only necessary to ensure
that the sum is finite, but also gives rewards in the near future more
weight than rewards in the distant future. It is set to 1 if only finite
problems are considered. The key insight is that Eq. (10.1) is a sum

FIGURE 10.2 Decision tree. At the root of the tree, there are two available actions a1 and
a2, each of which probabilistically leads to one of three outcomes (o1eo3). For each of these,
there are new options a3 and a4. Overall, the size of the tree increases rapidly with the depth
d and width w of the tree as wd.
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and due to the linearity of expectations (because the average of two
means is the same as the mean of two averages), it can be rewritten into
two terms as:

VpðstÞ ¼ E½rtjst;p�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
immediate reward

þ E

"XN
t0¼1

rtþt0g
t
0
����st;p

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g$reward from next timestep onwards

The total future reward from the next timestep onward, the second term
in the equation above, is simply the value of the next stateeaction pair
Vpðstþ1Þ, and hence we can write as:

VpðstÞ ¼ E½rtjst;p� þ E
�
gVpðstþ1Þ

��st;p�
The rewards rt are drawn from the reward process Rðst; at; stþ1Þ. The
expectations E½$� are over two processes: first, the likely actions taken, and
second, the likely consequences of those actions. Expanding these ex-
pectations and substituting the policy p for the first, and the transition
matrices T for the second, results in the so-called Bellman equation
(Bellman, 1957; Sutton and Barto, 1998):

VpðstÞ ¼
X
at

pðat; stÞ
X
stþ1

pðstþ1jat; stÞðRðst; at; stþ1Þ þ gVpðstþ1ÞÞ (10.2)

or, using a more compact notation:

VpðsÞ ¼
X
a

psðaÞ
X
s0

T a
ss0

�
Ra

ss0 þ gVpðs0Þ
	

10.2.2 Solving the Bellman Equation

Eq. (10.2) describes a consistency between values of states s and its
successor states s0 for a given policy p. If the reward function R and
transition matrices T are known, then this consistency can be used to
solve the equation and infer the values VpðsÞ for all states s. The first and
conceptually most straightforward way is to recognize that Eq. (10.2) is
linear and can be rewritten in vector form. Dropping the subscript t and
letting the successor state be s0, we have:

½vp�s ¼ VpðsÞ
½rp�s ¼

X
a

pða; sÞ
X
s0

p
�
s
0
���a; s	Rðs; a; s0Þ

½Tp�s ¼
X
a

pða; sÞ
X
s0

p
�
s
0
���a; s	
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We can now rewrite the Bellman equation as

vp ¼ rp þ gTpvp (10.3)

which is simply solved by:

vp ¼ ðI� gTpÞ�1rp

Here, we note an important feature of the effective transition matrix Tp

induced by the policy. It is a square stochastic matrix all columns of which
are probability distributions. As such, its leading eigenvector is 1, and the
steady-state distribution of state visits is the eigenvector corresponding to
that leading eigenvalue. The values are hence only finite as long as g < 1.
An alternative is to have a matrix Tp, the leading eigenvector of which<1.
This is true if all states have a finite probability of leading to an absorbing
state that cannot be left and which has zero reward. This latter setting
effectively curtails the infinite sum of rewards in Eq. (10.1) to a finite sum
of exponentially distributed length.

A different approach to solving the Bellman equation is to note that if
the values assigned to states are incorrect, then there is a difference D
between the left and the right side of Eq. (10.3):

D ¼ rp þ gTpv� v

This can be used to turn the Bellman equation into an update equation:

viþ1 ¼ vi þ Di

¼ rp þ gTpvi
(10.4)

which can be shown to converge to the true value vp for the same reason
as above (Bertsekas and Tsitsiklis, 1996).

10.2.2.1 Model-Free Temporal Difference Prediction Error
Learning

These previous approaches to evaluating the value function require
the modelM of the world consisting of the transition matrices T and the
reward function R to be known, and are hence instances of “model-
based” value estimation. So-called model-free techniques do not
require this. Instead, they only require that samples can be drawn from
the transition matrix and the reward function. Drawing samples corre-
sponds to observing the reward and state consequences of taking an
action, i.e., drawing an action at w p(a; st) given the current state st; and
then observing a successor state stþ1wpðstþ1jat; stÞ, and a reward
rtwRðst; at; stþ1Þ (see Fig. 10.1A). The Bellman equation (Eq. 10.2) con-
tains two expectations, one over the transition probabilities and one over
the action probabilities, which can be approximated with samples drawn
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from the two distributions. Temporal difference learning effectively
performs the iterative update of Eq. (10.4) after every sample, but in-
cludes a learning rate 0 � a � 1:

Vtþ1ðstÞ ¼ VtðstÞ þ adt

¼ VtðstÞ þ aðrt þVtðstþ1Þ �VtðstÞÞ
(10.5)

This fixed learning rate a effectively induces an exponentially decaying
average over past samples. If it is chosen to decay with the number of
times a particular state has been sampled, this procedure can be shown to
converge to the true value function of the policy over time under some
conditions (see toy example below).

10.2.2.2 Phasic Dopaminergic Signals

Notably, the long-term expected future reward can be learned over
time by comparing the expected reward VtðstÞ with the sum of the
received reward and the expected reward of the successor state Vtðstþ1Þ.
The difference between the two, dt, is the temporal difference prediction
error thought to be reported by phasic dopaminergic firing (Schultz et al.,
1997). We note here that this can be positive for a transition from a state of
low-reward expectation to a state of high-reward expectation even if the
immediate reward is zero. This is thought to explain the transfer of phasic
firing observed during conditioning of a cue to predict reward. Early on in
learning, dopaminergic neurons do not respond to the cue, but do
respond to the (unexpected) reward. Over time, as the animal learns that
the cue predicts the reward, the value V of the cue increases, and its
unexpected presentation elicits a prediction error, and hence firing in the
dopaminergic neurons. However, as the reward is predicted, the value V
is equal to the reward r, and hence a prediction error no longer occurs at
the time of reward, resulting in no dopaminergic firing.

10.2.3 Policy Updates

Given the value Vp of each state under a given behavioral policy p, the
policy can now be improved in a very simple manner by choosing that
action, which has the highest expected value in each state, i.e.,

pnewða; sÞ ¼
(
1 if a ¼ argmaxa0Q

p
�
a
0
; s
	

0 else

where

Qpðat; stÞ ¼
X
stþ1

pðstþ1jat; stÞðRðst; at; stþ1Þ þ gVpðstþ1ÞÞ
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is the stateeaction Q value of taking action at in st under the old policy p.
Again, this can be shown to converge to the optimal policy under some
conditions (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). What is
notable here, is that optimal policies are always deterministicdthere is no
reason ever to choose a suboptimal action.

Though conceptually simple, such policy updates are biologically
unreasonable, as they would require completely evaluating the value
function for a policy before any behavioral adaptation. Updating the
policy before having performed a full evaluation of the value function has
the potential of breaking many of the guarantees. In contrast, Q-learning
(Watkins and Dayan, 1992) is an “off-policy” method. This means that the
estimated values are not affected by the sampling process (the policy). It
proceeds as follows:

Qtþ1ðat; stÞ ¼ Qtðat; stÞ þ a
�
rt þ gmax

a
Qtða; stþ1Þ �Qtðat; stÞ

	
The key differences are the maximum operation over the next actions to
be taken, which requires some foresight and can be computationally
challenging if the potential behavioral repertoire is large. As long as all
stateeaction pairs continue to be sampled, this converges to the true
stateeaction value for any policy, and hence the policy can be updated
and learning occur online.

10.3 MODELING DATA

10.3.1 General Considerations

Having provided a brief overview over the key features of RL and
dynamic programming, we now turn to a tutorial overview of how
these techniques can be used to probe human (and animal) decision-
making. The framework suggested here is distinct from the standard
approach in a number of ways. First, it is a generative framework. This
means that the model can be run on the experiment under scrutiny and
used to simulate data akin to that obtained in the experiment. Rather
than modeling only specific aspects of the data, such as the averages in
different conditions, the approach is to model the process by which the
data came about, and the data itself, in their “holistic” entirety. For this,
the internal inference processes that give rise to the data have to be
captured in sufficient detail. The result is that learning or inference
processes can be tested on the data in their entirety. The test statistics
are replaced by parameters determining the internal processes. Unlike
traditional test statistics, their meaning is made explicit by their func-
tion in the model.
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The freedom to build different models is huge and vastly extends the
kinds of processes that can be inferred and tested. However, as each model
has to be built separately, there is also ample scope for a variety of mishaps.
As a result, the modeling should contain three general steps. In a first step,
the model needs to be built; in a second step, this model should be vali-
dated with surrogate data; and in a third step, the model is applied to the
real data. A general suggested framework is shown in Fig. 10.3 (Daw, 2009).

A few comments are worthwhile. The key first step clearly is the model
building. Here, the valuation processes bywhich choice preferences arise in
the models are the hypotheses to be tested. A reasonable approach is to
build a series of models starting from a very simple “null” valuation pro-
cess, and then adding in the various features of interest to examine to what
extent they parsimoniously contribute toward explaining the data. The
second component is the link function, which needs to be probabilistic to
allow noisy experimental data to be fitted. We noted above that optimal
policies are always deterministic. Making this assumption when fitting
models makes them very brittle as errors due to other, unforeseen and
maybe unrecorded events are interpreted as strong evidence. Hence, one
role of the link function is to assimilate noise from a variety of sources, and
inferring its parameters allows for individual variation in this. Neverthe-
less, its functional form should be checked, andwewill return to this below.

Validation on surrogate data serves a number of purposes. First, it is
important to check that the data the model generates are actually com-
parable to the data obtained in the experiment. Second, by fitting data
from the surrogate model, the ability to identify and recover parameters is
established. This is an important step before interpreting any parameters.

Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model M0 of ’’no interest’’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation : Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting : Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison : Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.
2. Real model validation: Run each model with the fitted parameters on the exact experimental

instance presented to that particular subject. Are the key features of the real data captured
reasonably?

3. Real model comparison : choose the least complex model that best accounts for the data.
4. Parameter examination : only at this point should the parameters of the model be examined,

and only the parameters of the most parsimonious model should be ascribed meaning.

FIGURE 10.3 Overview over modeling approach.
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Third, the ability to reliably distinguish between different models can be
established on surrogate data comparable to the one available in the
experiment under scrutiny. Indeed, it is prudent to attempt to perform
these steps before running the experiment in real as they may suggest
changes in experimental parameters, such as the length of the tasks or the
number of subjects to run.

Finally, the models need to also be validated on the actual data under
scrutiny. One possibility is to compare data generated from the model
(with fitted parameters) to the real data. For learning experiments, it is, for
instance, often useful to plot learning curves and ask whether the model
captures the shape of these curves well. Once the models have been thus
validated, it is meaningful to ask which of the models provide the most
parsimonious account of the data. This is the domain of model compar-
ison. Note that a model comparison is always relative and does not pro-
vide any absolute information and even the best amongst a set of models
may still be too poor to provide any meaningful information. The inter-
pretation of parameters in the models should only follow at the end, once
one model has been chosen as a good characterization of the data.

10.3.2 A Toy Example

As a first example, we consider very simple learning experiment in
Fig. 10.4A. In this experiment, each action at on trial t yields an immediate
reinforcement rt, but does not have any influence on future options.
Hence, the total summed future reward in this case is simply the average
immediate reward offered by each of the stimuli.

The first model assumes that individuals perform temporal difference
learning, adapted to this extremely simple scenario. Taking Eq. (10.5) and
observing that there is no next state, but only immediate rewards, the
temporal difference prediction error learning becomes simple prediction
error learning VTD

tþ1ðstÞ ¼ VTD
t ðstÞ þ a

�
rt � VTD

t ðstÞ
�
, as in Rescorlae

Wagner learning (Rescorla andWagner, 1972). The second model assumes
that individuals simply perform averages over the reinforcements earned
for each of the two stimuli, which is the correct inference to perform given
how the outcomes are generated. The expected values Vav are hence,

Vav
tþ1ðsÞ ¼

1

t

Xt
t0¼1

rt0 ¼
1

t

 Xt�1

t0¼1

rt0 þ rt

!
¼ t� 1

t
Vav

t ðsÞ þ 1

t
rt

¼ 1

t

�ðt� 1ÞVav
t ðsÞ þ rt

�þ Vav
t ðsÞ �Vav

t ðsÞ

¼ Vav
t ðsÞ þ 1

t

�
rt � Vav

t ðsÞ�
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The first line rewrites the sum over all past rewards as an iterative update.
The second line then rewrites this into a form similar to that of the tem-
poral difference (TD) learning rule. Comparing these, we see that the fixed
learning rate a in the TD learning rule has been replaced by a decaying
term 1/t in the average. While the averaging rule gives each of the t
samples the same weight, the TD rule always gives the most recent
sample a weight a, and the samples before that an exponentially smaller
weight. While the TD rule has one free parameter a, the averaging rule
has no free parameters.

FIGURE 10.4 (A) Simple toy learning experiment. On each trial, individuals have to
choose one of two squares. The blue square yields small rewards on 80% of trials, and the
red square on 20% of trials. (B) Surrogate data generated from a simple learning model.
Each of the horizontal rows shows the choice data for one subject, with gray indicating choice
of the blue and white choice of the red button. The red superimposed line is the average prob-
ability of choosing the red button across subjects on that trial. (C) Plots of true parameters b
against the parameters inferred from data in panel (B). The red line indicates correct equality.
(D) Plots of true learning rates a against those inferred from data in panel (B). Note that both
parameters were transformed to deal with natural limits on their values: to ensure b � 0 all
models are written in terms of b ¼ exp(b0), and to ensure 0 � a � 1 they are written in terms
of a ¼ 1/(1 þ exp(a0)). MAP-EM, maximum a posteriori using expectation maximization to
infer the priors; ML, maximum likelihood.
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10.3.3 Generating Data

Given a model of the choice process, it is straightforward to generate
data by using a link function that maps the values V onto probabilities of
taking particular actions. A frequent choice is the use of a softmax link
function whereby the probability of choosing stimulus s on trial t is:

pðat ¼ sjVtÞ ¼ ebVtðsÞ

ebVtðsÞ þ ebVtðsÞ (10.6)

The data in Fig. 10.4B were generated from the TD model with this
softmax.

10.3.4 Fitting Models

Having built a model and generated data from it, the next step is to fit
the model to the generated data. Fitting a model means finding the set of
parameters that are most compatible with the data. The maximum like-
lihood (ML) parameters are those under which the data are most likely. To
find them, we must maximize the likelihood of all the Tactions a1,.aT by
one subject given that subject’s parameters:

bqML ¼ argmax
q

log pða1;.aTjqÞ (10.7)

The question is how to compute the total likelihood of all choices. On first
sight, this appears difficult because choices depend on previous choices
and so cannot be treated independently. However, if every choice only
depends on the value Vt at the time of the choice t, as assumed in Eq.
(10.6), then the probability of observing a sequence of stimulus choices
a1;.aT is simply:

log pða1;.aTjqÞ ¼ log
YT
t¼1

pðatjVtÞ ¼
XT
t¼1

log pðatjVtÞ (10.8)

which is notable: Even though choices at any time t clearly depend on the
previous ones; once we condition on the values the choices become in-
dependent of the previous choices. The values can be updated iteratively
before computing the likelihood of each choice, leading to an algorithm
that takes the general and very simple form shown in Algorithm 10.1.

ALGORITHM 10.1 Likelihood computation.
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The total likelihood can now be passed to any of a number of opti-
mization tools to solve Eq. (10.7). Fig. 10.4C and D shows the result of an
ML fit in black for the TD model with the two parameters a and b. As can
be seen, the black dots are sometimes very far off the diagonal, which
unfortunately is relatively typical for these kinds of models. Although
ML estimators are asymptotically unbiased, they do have high variance.
This is often a prominent problem because parameters often do have
overlapping effects and therefore can trade-off each other. In these ex-
amples, whenever bwas set to a very small value, the learning rate awas
set to a very high value.

The blue circles show a very simple and often very powerful solution to
this, which is to impose a soft prior on the parameters and performing
maximum a posteriori (MAP) inference rather than ML. This is very
simply achieved by replacing Eq. (10.7) with

bqMAP ¼ argmax
q

log pða1;.aTjqÞpðqÞ

The computation of the posterior likelihood is thus just the same as that
of Algorithm 10.1, but with the log likelihood of the prior added to the
total log likelihood of the choices.

At times, however, the choice of the prior p(q) can be difficult. In these
situations, it can make sense to infer the prior from the data in an empirical
Bayesian setting (Huys et al., 2012). There are a number of techniques
available for this, and this is becoming a more common approach.
Fig. 10.4C and D shows this in blue. For this simple example, little is gained
over the basic MAP approach, but this changes for larger models.

10.3.5 Model Comparison

Having fitted the model to the data, we can ask how good an account it
provides. When doing so, however, it is not sufficient to simply look at the
model fit. Fig. 10.5A shows data generated from a straight line with some
noise added. The top panel shows a linear fit, while the bottom panel
shows a sixth order polynomial. Clearly the latter is a better fit despite the
fact that the top is closer to the truth. To understand why the model with
the better fit is nevertheless poorer, consider Fig. 10.5B and C. As the data
(orange dots) bunch up toward the right, they are better fit by one of the
triangular probability distributions in panel B than by the two uniform
distributions in panel C. The model in panel B, is very powerful. Different
parameter settings lead to wildly different distributions that often miss
the data entirely and predict data which is never observed. Hence, the
powerful model is likely to predict novel data less well. We can think of
this as a trade-off between the different settings a model allows, and the fit
it provides to the data. Fig. 10.5D illustrates that this problem exists for
learning models, too.
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Bayesian model comparison takes this into account by using as a
measure of fit not the best possible likelihood, but the average likelihood
over all possible parameter settings:

pðAjMÞ ¼
Z

dqpðAjq;MÞpðqÞ (10.9)

The Bayes factor between two models is then defined as

BF ¼ loge
pðAjM1Þ
pðAjM2Þ (10.10)

and is considered substantial if greater than 3, and conclusive if greater than
5 (Kass and Raftery, 1995). Unfortunately, the integral in Eq. (10.9) is not

FIGURE 10.5 Model comparison. (A) Data (black dots) generated from a straight line with
added noise is fit better by a complex sixth order polynomial (bottom) than by a straight line

(top). This is overfitting. (B and C) Intuition for the need to average over all possible parameter
settings to infer a model’s parsimony. An overly complex model will contain many parameter
settings that provide poor accounts of the data (orange), and only very few that provide a
good fit. When averaging these, the many poor fits outweigh the few very good fits (B).
Conversely, a simple model may not fit the data so well but is never far from the data and
does not predict data that are never observed. (D) Learning data generated from models of
increasing complexity (left to right), and fitted with models of increasing complexity. The
best fitting model with best likelihood is always the most complex one at the top.
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always straightforward to evaluate, and there exist a number of
approximations to it. The simplest ones are the Akaike Information

Criterion AIC ¼ �2 log p

 
A
����bqML

!
þ 2d, and the Bayesian Information

Criterion BIC ¼ �2 log p

 
A
����bqML

!
þ d logðnÞ, where d is the number of

parameters in themodel and n is the number of data points. These penalizes
models by counting their parameters. AIC tends to be less conservative,
while BIC can be too conservative. Another possibility is to perform a
Laplace approximation around the MAP parameters (Daw, 2009).

10.3.6 Group Studies

Themethods so far have considered individual subjects. However, most
studies, particularly in clinical settings, deal with group data. Fig. 10.6
shows different approaches to group data. Two simple approaches are to
treat all individuals as using the same parameters, i.e., a fixed-effects
treatment (panel A) or treating them entirely separately (B). While the
former conflates different types of noise and is therefore not recom-
mended, the latter can inflate noise depending on how the parameters are
estimated. A more natural approach is to respect the fact that individuals
in a group tend to be similar, and hence should have similar parameters
(Fig. 10.6C; Huys et al., 2012). However, even this still assumes that all
individuals use the same model. Two relaxations of this approach exist.
First, one can employ a random-effects treatment over models (Fig. 10.6D;
Stephan et al., 2009), or one can nest multiple models in a more complex
model (Fig. 10.6E; Daw et al., 2011; Guitart-Masip et al., 2012). While the
former assumes that individuals in a group may differ in terms of their
internal processes, it assumes that these internal processes are homoge-
neous. The latter conversely assumes that individuals employ a mixture of
strategies, but that this is true across the entire group. We note that nesting
models are problematic in that there can be an overfitting by the more
powerful component within individuals.

10.4 DISSECTING COMPONENTS OF
DECISION-MAKING

Having described the theoretical core of decision-making and how to
fit these valuation models to data, we turn to four examples. These are
chosen to illustrate some of the insights gained from detailed modeling of
behavioral data with a combination of RL and Bayesian techniques.
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10.4.1 Reward Learning

Alterations to how rewards are processed are important in a number of
psychiatric conditions. For instance, anhedonia is oneof the core elements of
depression and refers to an inability to experience pleasure. Pizzagalli et al.
(2005) asked whether anhedonia might specifically influence the ability of
people with depression to learn from rewards. They used a perceptual
decision-making task where subjects had to report the length of a briefly
presented mouth (Fig. 10.7A) as either short or long. Unbeknownst to the
subjects, one option was rewarded more frequently than the other. Over
time, subjects came to express a bias toward identifying the more rewarded
stimulus, but this bias was abolished by anhedonia. This task raises two
possibilities: either anhedonia blunts the sensitivity to rewards; or it blunts
the ability to learn from the rewards. In principle, this might be testable by
using a very simple prediction error learning to value the different choices:

Qtþ1ðat; stÞ ¼ Qtðat; stÞ þ aðrrt �Qtðat; stÞÞ (10.11)

FIGURE 10.6 Groupdata. (A) A fixed-effects analysis would assume that all subjects share
the same parameters. This is not recommended. (B) The extreme opposite is to perform
separate maximum likelihood fits for each subject. This in effect assumes that all subjects are
independent and have parameters that are not a priori related. (C) In a group design, it is
natural to assume that individual subjects are drawn from a group that describes their simi-
larity. For instance, parameters of individuals in a group could cluster around a particular
value. However, although this model is a random-effects model in terms of the individual
parameters, it is nevertheless still a fixed-effects treatment of the model itself; all individuals
are assumed to be examples of the same model. (D) Next, it is possible to consider random-
effects treatments of the models, i.e., that some individuals in a group will behave according
to model 1, others according to model 2, and yet others according to model 3. (E) Finally, it is
possible to examine whether individuals behave according to two different models. As this is
simply a more complex model, it can be combined with the approaches in panel (AeD).
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where r scales the size of the received reward, while a is the learning rate.
However, as alluded to above, this can be rewritten as:

Qtþ1ðat; stÞ ¼ ð1� aÞtQ0ðat; stÞ þ ar
Xt
t0¼0

ð1� aÞt
0
rt�t0 .

(A) (B)

(C) (D) (E)

FIGURE 10.7 Reward learning. (A) Pizzagalli et al. (2005) perceptual decision-making
task. Subjects have to indicate whether a briefly flashed mouth is long or short. Unbe-
knownst to them, one option is more frequently rewarded than the other, leading to a bias in
reporting that option amongst healthy subjects. However, this bias could arise from either
changes in the sensitivity to rewards, or changes in the ability to learn from rewarding
events. (B) Across multiple studies using this task, anhedonia was related to reward
sensitivity, but not to learning rate. (C) Requiring subjects to learn about multiple stimuli at
the same time slows down learning both in controls (top) and patients with schizophrenia
(bottom). (D) Including a workingmemory component in the model accounts for the pattern
of data in controls (top); and its impairment for the pattern in patients (bottom). (E) A model
without a working memory component is not able to account for the observed patterns. HC,
hippocampus; RL, reinforcement learning; RLWM, RL model with working memory; SZ,
patients with schizophrenia. Panels (A and B) reproduced from Huys, Q.J.M., Pizzagalli, D.A.,

Bogdan, R., Dayan, P., 2013. Mapping anhedonia onto reinforcement learning: a behavioural meta-

analysis. Biol. Mood Anxiety Disord. 3 (1), 12; Panels (CeE) from Collins, A.G.E., Brown, J.K.,

Gold, J.M., Waltz, J.A., Frank, M.J., 2014. Working memory contributions to reinforcement
learning impairments in schizophrenia. J. Neurosci. 34 (41), 13747e13756.
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Due to the product ar, the two parameters are partially negatively
correlated and specific statements about them require substantial data.
Nevertheless, when pooling across multiple experiments, it appears that
anhedonia is in fact related to a significant reduction in reward sensitivity
but does not impact learning rate (Fig. 10.7B; Huys et al., 2013). Additional
credence to this finding was given by the fact that a dopaminergic
manipulation mostly affected the learning rate. This is consistent with a
multiplicative change in the prediction error putatively reported by
dopamine (Schultz et al., 1997). However, while an impact of anhedonia
on the learning rate might have implied dopaminergic mechanisms, the
origins of changes to reward sensitivity in depression remains uncertain
(Treadway and Zald, 2011; Huys et al., 2015a).

The ability to learn from rewards is also thought to be affected in
schizophrenia. The prominent involvement of dopamine suggested that
this impairment may either arise through an impairment of striatal
reward learning mechanisms, or alternatively also through impairment of
prefrontal working memory mechanisms where dopamine also plays a
key role (Durstewitz and Seamans, 2008). Collins et al. (2014) exploited a
standard operant conditioning task which is, nevertheless, sensitive to
both working memory and striatal prediction error learning mechanisms:
when subjects are presented with increasing numbers of stimuli to learn
about concurrently, a slowing of learning is observed (Fig. 10.7C). This
pattern is not well accounted for by a simple change in learning rate and
instead requires a working memory component to be postulated
(Fig. 10.7D and E). Specifically, they consider a combination of two
learners. The first is the reward learning module and is as in Eq. (10.11).
The second, the working memory module, has a learning rate a set to 1.
This means that the resulting Qwm values store the previous event, and
discard anything before that. After the choice, the Qwm values are
decayed to mimic forgetting. Strikingly, the impairment seen in schizo-
phrenia was due mostly to the working memory component, rather than
to the reward learning component.

10.4.2 Pavlovian Influences

We next turn to the distinction between two types of values: Pavlovian
values of state VðsÞ and instrumental or operant values of stateeaction
pairs Qðs; aÞ. The former designate desirable states, but imply a policy or
behavioral preference only via additional mechanisms, for instance,
evolutionarily preprogrammed approach responses to appetitive states
(Dayan et al., 2006). In contrast, the Q values measure the goodness of
actions and hence can theoretically be used directly to motivate arbitrarily
specific behaviors. There is a rich literature distinguishing these (see
Dayan and Berridge, 2014; Huys et al., 2014 for reviews).
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Fig. 10.8A shows a very simple task that shows these components
concurrently at work during learning in humans; when subjects have to
go and are rewarded, or when they have to withhold going and are in a
punishment context, they perform well, whereas performing go
responses to avoid losses or nogo responses for reward is far more diffi-
cult (Fig. 10.8B). Looking at the learning curves (Fig. 10.8C), it appears
clear that learning is slower in the two difficult scenarios. A simple model
(blue) that only incorporates instrumental learning of stimuluseaction
values cannot account for this pattern. Incorporating a bias toward or
away from performing go responses also fails to capture the data (green
lines). It is only when a second, Pavlovian, learning mechanism is added
to the instrumental learner that the performance across the four contexts

FIGURE 10.8 Pavlovian and instrumental components of choice. (A) Subjects were
presented with one of four stimuli on each trial. For the yellow stimulus, go responses
were rewarded and nogo not rewarded. For the orange stimulus, nogo responses were
rewarded and go not rewarded. Similarly, for the blue stimulus go responses led to avoid-
ance of a loss, while nogo responses led to avoidance of the loss for purple stimuli.
(B) Overall pattern of results: performance is impaired when go and loss are paired, and
when nogo and rewards are paired. (C) Learning curves. The background shows individ-
ual choices (go white, nogo gray) for each participant; black lines show averages over
subjects; and colored lines are data generated from different models. (D) Model comparison,
with the most parsimonious model having the lowest score (indicated with a red star). BIC,
Bayesian Information Criterion; Pav: Pavlovian influence; RW: RescorlaeWagner. From
Guitart-Masip, M., Huys, Q.J.M., Fuentemilla, L., Dayan, P., Duzel, E., Dolan, R.J., 2012. Go
and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage

62 (1), 154e166.
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can be matched, and then does so in sufficiently great detail to merit the
increase in complexity (Fig. 10.8D). This Pavlovian influence simply
promotes the active go choice in proportion to the average reward
experienced for each stimulus,

Vtþ1ðsÞ ¼ VtðsÞ þ aðrrt � VtðsÞÞ

wða; sÞ ¼
8<:Qða; sÞ þ ˛VðsÞ if a is go action

Qða; sÞ else

pðatjstÞ ¼ expðwðat; stÞÞX
a0
exp

�
w
�
a
0
; st

		
that is, when the stimulus leads to rewards, go is promoted, and when the
stimulus tends to lead to losses, go is inhibited proportionally to the value
of the stimulus. This is another instance where each individual appears to
be influenced by multiple learning systems akin to Fig. 10.6E.

Though not examined with this particular task, the influence of
Pavlovian stimulus-bound values on instrumental choices has been found
to be aberrant in a variety of conditions ranging from alcoholism to
depression. In alcoholism, for instance, Pavlovian influences are stronger,
and the extent to which this involves the ventral striatum appears to
predict relapse after detoxification (Garbusow et al., 2016).

10.4.3 Model-Based and Model-Free Decision-Making

A third example concerns the distinction between model-based and
model-free decision-making. In model-based decision-making, the agent
is assumed to know the consequences of actions and knows where
rewards are located. This implies knowledge of transition matrices T and
reward functions R. At choice time, evaluations of different behavioral
options are performed by searching the tree defined by T ;R (Daw et al.,
2005; though see Daw and Dayan, 2014). In model-free decision-making
the values V are accumulated over time through experience. At choice
time, no further computation is required. The two types of decision-
making thus trade computational costs for experiential costs. Daw et al.
(2011) designed a task to measure the trade-off between the two types of
learning within an individual.

Motivated by the suggestion that addictive and compulsive disorders
might involvea shift frommodel-based towardmodel-freedecision-making
(Robbins et al., 2012), this task has since been examined extensively, with
some supporting (Voon et al., 2015; Gillan et al., 2016), but also compli-
cating evidence (Nebe et al., 2016). The difficulties stem particularly from
the fact that the model-free component appears both poorly measured and
unresponsive to any intervention (cf., Huys et al., 2016).
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10.4.4 Complex Planning

We finally turn to a fourth example that uses RL techniques to examine
howmore complex planning tasks are solved (Huys et al., 2012, 2015c). The
motivation for doing so is that many daily tasks involve planning problems
that are extremely complex and easily overwhelm even powerful com-
puters. They therefore cannot be solved fully, but mostly be approximated
and simplified. Fig. 10.9A and B shows an example task that has to be
solved by planning, but which is difficult. Fig. 10.9C and E show two
possible strategies to approximate the task. The first, pruning, involves
reflexively stopping the consideration of a plan if the plan requires tran-
sitioning through a salient loss (here, �70 points; cf. panel B). This means
that large gains hiding behind the large losses are also missed. Indeed,
subjects nearly never chose to transition through the path involving a large
loss when there was another equally good path (Fig. 10.9D). Strikingly,
when comparing the inferred tendency to stop thoughts at salient loss
points, this effect appeared nearly independent of the size of the salient loss
(Fig. 10.9E). If pruningwere an adaptive response to the large loss, then this
should have varied with loss size. This instead suggests a very simple,
reflexive reaction to stop thoughts when salient losses are encountered.
Further models examined how subjects subdivided the task (Fig. 10.9F).
Strikingly, they subdivided the task in a manner that nearly optimally
reduced the computational load (Fig. 10.9G).

10.5 DISCUSSION

Learning and decision-making are closely related facets of human
affect and cognition. RL and dynamic programming provide principled
approaches, which have been briefly reviewed here. This was followed by
a brief, tutorial-like overview over how to fit suchmodels to actual data. A
point worth emphasizing is the importance of validating the model and of
combining formal model comparison with informal comparisons of data
generated from themodel with the real data. Finally, the chapter covered a
few prominent applications of the theory to psychiatric or neuroscience
questions.

Taking a step back, one can ask what paths decisionetheoretic accounts
provide for psychiatric dysfunctions. One categorization is into three such
paths (Huys et al., 2015b):

• Solving the wrong problem. This features the use of the wrong model
of the world: either maximizing the wrong reward function (for
instance, judging a short-termdrug rewardmore important than long-
termfinancial stability), orutilizing thewrongpredictions about action
consequences (wrongly believing that one becomes more socially
adept when high), or interpreting events wrongly due to errors in the
likelihood.
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(A)

(E) (F) (G)

(B) (C) (D)

FIGURE 10.9 Task and approximations. (A) Subjects were shown six boxes. The
randomly chosen starting location was indicated by the bright box and the number of moves
to plan by the number at the top. Subjects were given time to plan, and then had to enter the
entire planned sequence in terms of left/right button presses before seeing the chosen
sequence and the rewards earned. (B) The task consisted of a maze, and subjects were placed
in one of the six boxes at the beginning of each trial. They planned how to traverse the maze
such as to maximize the sum of deterministic outcomes earned along the path. Each state had
two successor states, which could be reached deterministically by right or left button presses.
(C) Decision tree starting from state 3 and for a depth of 3 moves to plan. Pruning involves
cutting off branches of the tree. A simple pruning strategy is to avoid transitions through large
losses. In this particular setupwith�70 as large losses, this would lead to the even larger gains
being forfeited. (D) The lines show the fraction of optimal paths chosen for each depth of
problem. In this version of the task, there were always two optimal paths: one through a
salient loss (blue line), the other avoiding the salient loss (green line). When given the choice,
subjects thus nearly deterministically avoided transitions through the large loss even when
this had no impact on the outcome. (E) A computational measure of the probability of
stopping the evaluation of a tree at a salient loss (blue) and at other points (red) for three
groups with different salient losses of�70, �100, and �140. Strikingly, the stopping probabil-
ities are barely different, suggesting that the inhibition of thoughts is reflexive rather than
adaptively goal-directed itself. (F) Hierarchical decomposition. The complexity of the
problem can be drastically reduced by approximating it with a subdivision of the task into
smaller problems that are composed greedily. Here, for instance, first solving the depth-2 tree,
and then solving whichever depth-1 tree this leads to. (G) The blue line shows the distribution
of thought fragment lengths that would maximally reduce computational load without
affecting performance. The gray lines are inferred from the data and show a close match,
suggesting that individuals spontaneously near-optimally subdivided the task to minimize
computational costs. From Huys, Q.J.M., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., Roiser,
J.P., 2012. Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by

pruning decision trees. PLoS Comput. Biol. 8 (3), e1002410; Huys, Q.J.M., Lally, N., Faulkner, P.,

Eshel, N., Seifritz, E., Gershman, S.J., Dayan, P., Roiser, J.P., 2015c. Interplay of approximate

planning strategies. Proc. Natl. Acad. Sci. U.S.A. 112 (10), 3098e3103.
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• Solving the correct problem, but poorly or wrongly. As most decision
problems are too hard to solve, some measure of approximation and
error will naturally occur. The examples in the previous section show
that these features are actively being investigated.

• Solving the correct problem, correctly, but based on poor experience.
Trauma and stress are strongly associated with psychiatric ill-health.
Behavior following traumatic exposure may well represent the
“correct” solution even though it impairs well-being.

Finally, it should be mentioned that these techniques maywell be useful
in combination with other techniques. For instance, the extraction of
meaningful parameters in a generative model may provide a very accurate
and informationally efficient summary of complex, high-dimensional data.
As such, these models can function preprocessing to reduce the dimen-
sionality of data before applying other analyses (Wiecki et al., 2015, 2016;
Huys et al., 2016).
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