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ABSTRACT

When an organ is unable to meet the demands placed on it, illness can arise. As the main func-
tions of the brain are to compute and learn, an understanding of mental illnesses will benefit
from an understanding of the computational and learning functions the brain performs, and how
these are affected in states of ill-health. Tasks allow highly specific computational and learning
processes to be probed. After a brief introduction into computational psychiatry more broadly,
this chapter explores how tasks can be used for precision psychiatry. It is argued that identifi-
cation of disease mechanisms via tasks can facilitate the development of targeted interventions
and the targeted administration of therapies. However, the clinical use of tasks currently face
issues around reliability and robustness. This chapter describes and discusses four reasons for
this: time, strategy, noise and research setting, and describes how these are at least partially
amenable to computational techniques.
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1 INTRODUCTION

The burden of mental illnesses is large (WHO, 2017) and the treatment gap remains wide. While
many different treatment approaches may exist, it is often hard to predict who will respond to
which treatment, and the illness course is relapsing or chronic in a substantial fraction of those
affected (e.g. Angst et al. 2003). In this setting, it would be clearly useful if clinicians were able
to target treatments more precisely. Treatment precision has two facets. On the one hand, pre-
cise treatments remove the cause of the illness with minimal other effects. On the other hand,
individuals differ and hence will react to the same treatment differently even if suffering from
the putatively same causative agent. Hence, precision treatment aims also to be personalized
and take constitutional or illness factors of individuals and their individual disease processes
into account when refining the choice of treatment (Collins and Varmus, 2015). Although this
is a standard feature of many aspects of medicine, advances in molecular techniques have dra-
matically increased the scope of personalization and precision. This has arguably been most
successful in the field of oncology, where genomic signatures of individual cancers are used to
guide treatment.

In psychiatry, parallel efforts have led to the use of genetic information about liver metabolic en-
zymes affecting the pharmacokinetic properties of medications as the ideal dosing will depend
on the metabolism of the medication, though these tests have yet to enter standard clinical prac-
tice (Peterson et al., 2017). On a different level, personalization has of course long been woven
tightly into the treatments of mental illnesses. Cognitive Behaviour Therapy, for instance, aims
to identify and then modify the individual’s underlying core beliefs, and a similar focus on the
details of an individual’s illness are prominent features of many psychotherapies. The under-
standing that mental illnesses are usually worsened by stress is reflected in the broad acceptance
of the importance of holistic care, e.g. in Engel (1980)’s biopsychosocial model, and this in turn
has facilitated specific social, financial, housing and other support interventions, which certainly
are ’personalized’. Precision psychiatry, as understood in this book, however aims to leverage
our recent advances in the understanding of the brain and the explosion in technological ca-
pacities to further improve how treatments are developed and targeted (Fernandes et al., 2017;
Perna et al., 2018).

This chapter will first briefly outline the motivation for a computational approach to mental
illness, before focusing on the use of tasks to probe specific computational processes. A major
hindrance to the translation of tasks into clinical practice is their apparently low reliability, and
the chapter will hence examine possible causes of this in some detail.

2 COMPUTATIONAL PSYCHIATRY

When considering illnesses arising from a particular organ, it is critically important to keep
the main function of that organ in mind. For instance, many features of heart failure are only
understandable with respect to the fact that it has a pumping function and is key to maintaining
appropriate pressure gradients across the cardiovascular system. The same is true for the brain,
the key function of which is to compute - storing information, deriving succinct summaries of it,
and predicting the future. What sets the brain apart from all other organs is that its ability to
process information changes as a function of the information it has already processed and stored
- it learns. While other organs adapt, like muscles, the changes in the brain’s ability at a higher
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level are not just quantitative (such as more strength), but qualitative: through learning, the
brain can come to perform novel computations; and through its ability to compute, it can change
how and what it learns. Just as the inability to meet pumping demands is the defining feature
of heart disease, the inability to meet computing and storage demands shapes the signs and
symptoms of brain disease (see Box 1 for an example). While some computational demands have
obvious consequences in terms of movement or sensory deficits, others are more subtle, affecting
a brain’s ability to solve abstract or complex social problems, i.e. to perform higher cognitive
functions. An understanding of these dysfunctions is likely to require an understanding of the
functions affected, and if these functions are primarily computational, then a computational
approach might well be necessary.

Computational psychiatry is a young field at the intersection of psychiatry, psychology, neuro-
science, mathematics, statistics and machine learning. It attempts to harness advances in theo-
retical and computational insights to address clinical issues in the realm of psychiatric illnesses
(Huys et al., 2011; Montague et al., 2012; Stephan and Mathys, 2014; Wang and Krystal, 2014;
Huys et al., 2016b; Stephan et al., 2016b,a, 2017; Rutledge et al., 2019). The motivation for
using mathematical and computational methods to approach subjective phenomena as mood,
paranoia and trauma is broadly-speaking two-fold, reflecting the above theoretical considera-
tions about the nature of mental illnesses, but also data-analytic ones (Huys et al., 2016b; Huys,
2018; Bennett et al., 2019).

Box 1: Computational components of depressive symptomes.

Computational processes are likely involved in both the aetiology and the treatment of ma-
jor depressive disorder, which is a syndrome with low mood, anhedonia and low energy at its
core (American Psychiatric Association, 2013; World Health Organization, 1990; Mitchell et al.,
2009). The odds of a first episode being increased by a factor of nearly 10 after a major life event
(Kendler et al., 2000). The causal link from experiences such as live events, which are external
to the brain, to symptoms such as mood and energy must flow via some form of interpretation
of the events with long-term consequences, i.e. it must involve a computational process and
learning. Indeed, biases in information processing have long been established as risk factors for
depression (Alloy et al., 1999). A similar argument can be made for psychotherapeutic treat-
ments such as behavioural activation (Jacobson et al., 1996; Dimidjian et al., 2006). Although
specific implementations of this therapy vary, they broadly involve teaching individuals to act
from ’outside in’, i.e. to act according to their goals rather than their current emotional state and
support them in formulating specific, achievable, measurable, realistic and temporally defined
(SMART) goals. The aim is to increase the rate at which activities with positive consequences
are performed, leading to an overall increased rate of experienced rewards and thereby a reduc-
tion in negative mood. While behavioural activation is a particularly clear example, the causal
link of any psychotherapeutic intervention must at some point involve computational and learn-
ing processes as there are no direct influences on the brain systems determining the symptoms.
Interestingly, the original behavioural activation study found that response to the behavioural
component appeared to relate to a change in cognitive features (attributional style) engendered
by the intervention (Jacobson et al., 1996).

The data-analytic side itself has multiple aspects (Woo et al., 2017; Stephan et al., 2017; Bzdok
and Meyer-Lindenberg, 2018). First, testing computational theories about brain functions and
their involvement in mental illness requires the use of advanced analytic methods. Theories of
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learning, for instance, are most thoroughly tested by building generative computational models
and examining how well they explain data (Wetzels et al., 2010; Piray et al., 2019). Second,
data of increasing richness, complexity and volume are now being gathered routinely thanks to
advances in neuroimaging, mobile devices, data storage, online and computer technology (e.g.
Gillan and Daw 2016). Researchers and clinicians are hence faced with such large datasets with
increasing frequency. Deriving insights from them and correctly interpreting them requires fa-
miliarity with computational methods ranging from programming to complex machine-learning.
For instance, large datasets raise fundamental issues around the stability and validity of infer-
ence: some inference problems such as regression become ill-posed when the dimensionality
of the data (e.g. the number of data points per subject) is too high, and require sophisticated
methods such as regularization, dimensionality reduction, Bayesian model evidence estimation,
cross-validation or the training of deep neural networks. An important contribution of data-
analytic approaches is a renewed emphasis on cross-validation (Stone, 1974). The term pre-
diction has often been used to describe associations in correlational analyses, e.g. regressions,
but such associations often do not generalize to novel datasets, and hence represent instances
of overfitting (Huys et al., 2016b). These can be addressed by validating them on a separate
dataset, and techniques such as cross-validation provide estimates of the likely generalizability
of any findings. More generally, machine-learning approaches allow for the pragmatic discovery
of potential signatures of illness or treatment response. This is becoming more attractive as the
cost of acquiring vast datasets is reduced (Rutledge et al., 2019).

These arguments suggest why computational methods are likely to play an important role in
the development of novel targets and treatments for mental illnesses (Wang and Krystal, 2014;
Maia et al., 2017). They also suggest that researchers in the area of mental health are likely to
be faced with computational challenges, and hence that ensuring literacy with computational
methods through teaching programmes might be useful.

3 TASKS TO MEASURE COMPUTATIONAL FUNCTIONS

The ways in which computational tools can come to support precision psychiatry in everyday
clinical practice is hence manifold. We have previously described a broad procedure for bringing
computational tools into the clinic that is modelled on the drug developmental pipeline, with
a large number of tools being examined preclinically, and the most promising ones being opti-
mized for robustness prior to being put through randomized clinical trials (Paulus et al., 2016).
Clearly, this is not something to be fulfilled by a single lab, and there is an urgent need for
large-scale collaborations (Browning et al., 2019).

In this chapter, I will focus on one important role computational tools will likely assume in daily
clinical practice: that of measurement using tasks. Measurements of relevant computational
processes could have many different applications, such as for diagnosis, treatment allocation,
treatment monitoring and risk assessment. Tasks are likely to play a key role in measurement
because they represent the most direct approach to measuring specific learning and computa-
tional functions. There is now a large and rapidly growing wealth of tasks that activate, and
thereby measure, increasingly complex and well-defined computational functions. (Frank et al.,
2004; Mathews and MacLeod, 2005; Pizzagalli et al., 2005; Daw et al., 2011; Huys et al., 2013,
2012; Browning et al., 2015; Mkrtchian et al., 2017; Huys and Renz, 2017; Rutledge et al.,
2017; Aylward et al., 2019; Berwian et al., 2019). The recent increase in mobile devices and
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computers, coupled with the development of toolboxes for efficient task deployment in browsers
or apps, has profoundly reduced barriers to deploying tasks as probes in clinical settings (Gillan
and Daw, 2016; Rutledge et al., 2019).

The two-step task (Fig 1), for instance, is a widely used task which attempts to capture an
individual’s tendency to learn and make decisions via one of two strategies - model-free or
model-based (Daw et al., 2011). Model-free learning has been related to habitual decisions,
and model-based learning to goal-directed behaviour (Friedel et al., 2014). In model-free learn-
ing, individuals learn by summing up prediction errors over multiple repetitions. Model-free
decisions relying on these values hence change slowly over time. By contrast, model-based de-
cisions require on-the-fly inference. While this is computationally demanding, it is also able to
more rapidly adjust to any new information. Patients with a variety of compulsive disorders
including obsessive-compulsive disorder, binge eating and methamphetamine addiction show a
characteristic pattern on this and related tasks, with a bias towards model-free and away from
model-based reasoning in large samples across multiple different settings (Voon et al. 2015;
Gillan et al. 2016, 2019; Patzelt et al. 2019; though not in alcohol addiction Huys et al. 2016a;
Nebe et al. 2018).

Another example task is the affective go-nogo task (Guitart-Masip et al. 2012; Fig 2). Tasks
measuring Pavlovian influences on instrumental choice have shown robust sensitivity to alcohol
dependence (Garbusow et al., 2019), anxiety (Mkrtchian et al., 2017), trauma (Ousdal et al.,
2018) and suicidality (Millner et al., 2019). The latter finding in particular is noteworthy. The
authors modified the task so that individuals could learn to avoid or escape unpleasant sounds
either through active (go) or passive (nogo) behaviour. Patients with lifetime non-fatal suicidal
thoughts and behaviours showed a selective increase in the tendency to actively escape from
the aversive noise. Tasks such as these have great potential as structured probes to directly
measure, with high precision and at low cost, high-level processes not accessible to techniques
such as self-report, observation, biochemical or neuroimaging assays (Barch et al., 2008).

For the ideal clinical scenario, such tasks would result in task-derived measures of specific com-
putational or learning processes (TDMs) that a) are mechanistically involved in causing illness
and b) are amenable to interventions. The impact of a particular intervention might then be
mediated by its impact on the TDMs (Figure 3A). In this situation, measuring the TDMs would
have substantial value for precision psychiatry. The presence of raised or reduced TDM would
indicate the presence of the particular aetiological process. This in turn would allow for differ-
ential treatment allocation to those interventions known to impact this particular TDM. In the
absence of any abnormalities in any TDMs on the other hand futile exposure to likely unhelpful
treatment could be avoided.

The key steps towards these goals hinge on the notion of discovering and engaging mechanisms
relevant to mental illnesses. First, tasks need to be designed that yield reliable, robust and
clinically deployable individual differences in a computational or learning process (Figure 3B).
This is currently an area in great need for development, and we will focs on it below. Once
such robust TDMs have been established, their relevance to particular symptoms or illnesses
needs to be established, for instance via traditional case-control or correlational dimensional
studies. Here, the advent of online methods promises to greatly accelerate the examination of
new probes (e.g. Gillan et al. 2016; Gillan and Daw 2016; Rouault et al. 2018). It is however
worth pointing to the value of longitudinal studies here. Although still correlational, examining
how symptoms covary with a TDM within individuals over time avoids at least some of the more
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FIGURE 1: Two-step task. A: Participants have to first choose amongst two of the green
stimuli. Each of the stimuli probabilistically leads to one of the second-stage stimulus
sets with high probability, and to the other set with low probability. Participants
then choose one of the two resulting second-stage stimuli and obtain a reward or
not. B: A model-free strategy here corresponds to repeating the first-stage (green)
choice if the second-stage choice was rewarded, irrespective of the frequency of the
transition observed. A model-based strategy takes the transition probability into
account: after a rare transition, a reward leads to a switch at the first stage. Consider
choosing the left green choice, but transitioning to the blue second stage and then
obtaining a reward. In order to gain another reward from the same blue stimulus,
the best strategy takes the transition probability into account and leads to a switch of
the unchosen first-stage stimulus. Individuals typically use a mixtures of these two
strategies which can be measured by the parameter w. C: Patients with binge eating
disorder (BED), OCD and methamphetamine depencence, but not with obesity or
alcohol dependence show a reduction in the parameter w that trades off between
these strategies, i.e. they show a shift towards mode-free decision-making. Panels
A and B adapted from Daw et al. (2011). Panel C adapted and redrawn from Voon

et al. (2015).
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FIGURE 2: Affective go-nogo task. A: Individuals were taught to choose whether to go
or nogo (respond on a button) for different stimuli. With some stimuli (fractals), an
unpleasant tone could be escaped or entirely avoided by a go response (top row).
With other stimuli, the unpleasant tone could be escaped or avoided by performing a
nogo. B: A computational model fitted to the data extract a key parameter on which
groups differed. Participants with a lifetime history of suicidal ideation showed a se-
lective bias towards actively escaping, but did not show a bias in the avoid condition.
The bias here was the starting point of a drift-diffusion model (Ratcliff and Smith,
2004). Figures adapted from Millner et al. (2019).

fundamental problems inherent in cross-sectional designs (Borsboom et al., 2009; Molenaar
and Campbell, 2009). It then has to be examined whether the task-derived measures can be
engaged by interventions, and whether a change in the task-derived measures must mediate the
improvement in symptoms due to targeted interventions. Clearly, this is a very high bar. Indeed,
there are few tasks which have been examined in all these scenarios. One exception is the two-
step task, which has not shown changes with clinical state after psychotherapy (Wheaton et al.,
2019). Though negative, this may relate to the poor reliability of the task (see below), and such
research is critical for the development of precision tools.

4 LIMITATIONS OF CURRENT TASK-BASED MEASUREMENTS

Computational probes involving tasks must deliver reliable measurements if they are to be used
clinically (Barch et al., 2008; Savitz et al., 2013). It has recently become clear that the relia-
bility of many task-derived measures is still below the level of reliability deemed necessary for
potential clinical utility (Barch et al., 2008; Savitz et al., 2013). Strikingly, this is even true for
classical tasks that have stood the test of time. For instance, Hedge et al. (2018) examined tasks
such as the Stroop, Eriksen Flanker and stop-signal tasks, and found that although the group
effects were reliable, the effects at the individual level were not. Even the Stroop reaction time
cost, i.e. the difference in reaction times to congruent and incongruent stimuli, only showed a
test-retest Intraclass Correlation Coefficient of 0.6. A meta-analysis of published test-retest relia-
bility measurements and a large-scale online study suggest a reliability somewhere between 0.3
and 0.6 across a wide variety of tasks (Enkavi et al., 2019). Importantly, this was substantially
lower than the reliability of self-report surveys around 0.6 - 0.7.

The causes for low reliability fall into four categories: time, strategy, noise and research setting.
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FIGURE 3: Measuring mechanisms for the clinic. A: For precision targeting, the mea-

sures derived from computational probes should mediate the effect of interventions.
The measure m;, can be used to decide whether to apply intervention k if interven-
tion k reduces measure my, and this measure my, relates in a mechanistic or causal
way to the illness. For instance, if antibiotics reduce certain bacterial cell counts, and
these bacterial cell counts cause symptoms such as fever, then applying this antibi-
otic is likely to lead to an improvement in symptoms via its impact on the bacteria.
B: For this to be feasible, computational probes, which might involve the results of
a task being analyzed with some computational model and producing a measure
or my must be reliable at the individual level. The probes must also be deployable
in clinical settings, and be robust to typical clinical situations. C: Measurements de-
rived from computational probes must be valid, i.e. changes in these measurements
should covary with changes in other measures of illness within individuals over time,
and between individuals. D: Treatments, be they novel or established, should impact
the measurement.

LIMITATIONS OF CURRENT TASK-BASED MEASUREMENTS
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First, if the underlying cognitive mechanism changes with time, the measure will appear less
reliable. A variety of task-derived measures do show excellent split-half reliabilities or reliability
when the task is repeated immediately, but this reliability drops over weeks to months (Garbu-
sow et al., 2014; Pooseh et al., 2018; Ahn et al., 2019; Shahar et al., 2019). For instance, Ahn
et al. (2019) report reliabilities above 0.9 for immediate test-retest, but these fall to 0.8 within
a month. A number of reports on low test-retest reliability of tasks are based on examination
of reliability over delays of months over even years (Hedge et al., 2018; Enkavi et al., 2019).
While this may be the right timescale to examine cognitive processes relating to stable personal-
ity factors, cognitive processes of relevance to the treatment of mental illnesses are expected to
change on the same timescale as psychopathological states change, and should be amenable to
therapeutic interventions. As such, the aim should be the establishment of TDMs that are highly
reliable over short periods, but sensitive to relevant psychopathological changes (Duff, 2012)
over weeks.

Second, tasks may appear unreliable because the strategy an individual employs to solve the
task changes. This will also reduce internal consistency (Hajcak et al., 2017). For instance,
through practice, individuals might discover shortcuts to solving a task, or engage demand-
ing processes less due to fatigue. The presence of such inconsistencies can be examined using
measures such as split-half reliability. Their nature can be identified through computational
modelling, allowing particular strategies to be formulated as generative models. These can then
be run on the task and provide quantitative measures as to how well a particular strategy ex-
plains the behaviour on a task (Guitart-Masip et al., 2012; Huys et al., 2012; Schlagenhauf et al.,
2014; Huys et al., 2015; Berwian et al., 2019). Indeed, a change in strategy is likely to account
for some of the changes seen with time, which have traditionally been ascribed to a change in
the underlying cognitive mechanism.

Third, noise in a task-derived measure will reduce the estimated reliability. This noise can
sometimes be reduced by making tasks longer (Rouder and Haaf, 2019), though this does not
improve all task-derived measures equally (Enkavi et al., 2019): in learning tasks, for instance,
early trials are informative about the learning process, but once a strategy has been selected
and reached stability, additional trials no longer provide information about the learning process.
The best strategy to reduce noise in the estimation of a particular process hence depends on
the specific process. Techniques such as active learning or adaptive design optimization provide
principled ways of maximising the amount of information acquired per trial (MacKay, 1992;
Chaloner and Verdinelli, 1995; Paninski, 2005; Myung et al., 2013). As an example, consider
delay discounting (Pooseh et al., 2018; Ahn et al., 2019): here, individuals have to repeatedly
choose between receiving a small monetary amount sooner (e.g. £5 now), or a larger amount
later (e.g. £10 in 2 months). Traditional approaches ask a fixed set of questions. However, if the
subject has already accepted to wait 2 months for £10, then they are very likely to also be willing
to wait 2 months for £30, and hence this item will not add much information. An alternative is
to choose an option where the evidence gathered so far suggests equal probabilities for choosing
the early and late option-an example of uncertainty sampling (Settles, 2012; Pooseh et al.,
2018; Schulz et al., 2018). Indeed, these ideas underlie adaptive testing in item response theory
approaches (Embretson and Reise, 2000), but have only rarely been exploited in the setting of
tasks for mental health (Aranovich et al., 2017).

Strong guarantees exist about the usefulness of information-guided adaptive optimization if the
underlying process is static and does not interact with the process (Paninski, 2005). However,
human task strategies may change, and in particular subject may respond to the presence of
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changes in the task with shifts in strategy. More global optimizations problems are computa-
tionally challenging (Krause et al., 2008). But promising approaches include a combination of
dynamic programming with adaptive design (Kim et al., 2017), and there is a dearth of optimiza-
tion work that has explicitly attempted to avoid inducing changes in the underlying cognitive
process, or indeed measured this. Another important aspect of noise in TDMs is the reduction
of estimated correlation with other processes of interest (Spearman, 1904). This may lead to
processes being deemed irrelevant when this is not the case (Rouder and Haaf, 2019). One ap-
proach is to take uncertainty into account, either via computational models (Huys et al., 2012,
2013; Shahar et al., 2019; Price et al., 2019; Yang et al., 2019) or via hierarchical estimation
procedures (Gelman et al., 2013; Wetzels et al., 2010; Huys et al., 2012, 2013; Rouder and Haaf,
2019). Accounting for noise in the context of temporal reliability allows for a theoretical upper
limit on reliability to be estimated. Tasks with higher theoretical reliability can in principle be
lengthened or optimized to achieve this reliability, and hence may have clinical value. Taking
uncertainty into account when examining covariation with other variables prevents disregarding
potentially important processes.

Fourth, what exactly is viewed as 'the same result’ varies in different research settings (Cron-
bach, 1957; Borsboom et al., 2009). In a traditional experimental psychology setting, a task is
viewed as reliable if it produces an effect at the group level when repeated in a different sample.
Variation between individuals hurts this notion of reliability: if individuals vary substantially,
then the effect at the group level, usually measured by dividing the mean by the standard devi-
ation, will necessarily be lower. On the other hand, in the context of the individual differences
literature, a reliable measure is one that ranks individuals in the same order on repeated admin-
istrations. Here, variation between individuals, measured by correlation coefficients, generally
increases reliability as the between-individual variability appears in the numerator (Hedge et al.,
2018). Unlike questionnaires, tasks have generally been designed in the experimental psychol-
ogy tradition, and hence are typically geared at maximising group-level reliability. As such,
the component of variability attributable to differences between individuals is generally lower
(Enkavi et al., 2019; Hedge et al., 2018). This is one major reason for the comparatively low
reliability of tasks compared to questionnaires, and is a major hurdle for translation of tasks into
a clinical setting.

5 CONCLUSION

In summary, computational approaches to mental health are motivated by the computational
and learning functions of the brain, and by the complexity and quantity of data being acquired.
Tasks are likely to be important for precision psychiatry as they allow specific learning and com-
putational functions to be probed. However, tasks need to be further developed to achieve the
reliability and robustness necessary for clinical deployment. As described here, computational
models are likely to play an important role in this in that they can account for noise and strat-
egy changes, and also facilitate adaptive sampling techniques. Once tasks have been designed
that are both valid and reliable, researchers will need to shift attention towards studies that
ask whether the processes can be engaged by therapies, and whether they mediate therapeutic
improvement. It might even be advantageous to consider such longitudinal studies (particularly
in the setting of treatments) early on.

Although the focus here has mainly been on tasks, similar arguments can be made for other

10



Huys: Precision psychiatry REFERENCES

techniques including in particular neuroimaging. Here, too, very reliable tasks have not reached
reliabilities necessary for clinical deployment (Braun et al., 2012; Plichta et al., 2012; Savitz
et al., 2013), and at least as far as they are to be used as measurements, similar arguments as
for tasks can be made.
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