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Abstract

We propose a reinforcement based framework for learningdonrently
connected populations of spiking neurons. Learning makesofia re-
ward signal, which conveys information about the qualityratabilistic

inference based on the population spikes, and yet requieg®minantly
local information to specify synaptic plasticity. We apfiys framework
to the canonical example of probabilistic inference, nartiet Bayesian
combination of prior and likelihood about an input, but ire tichest
case of rapidly changing stimuli sparsely sampled by inpikes and
re-represented in a plastic spiking population. We devtiefdeal ob-
server, which here involves inference in a Gaussian processform

that bears directly on the spiking network and compare ttedditive re-
sponses.

The timing of individual spikes is known to play a critical @ a wide variety of neu-
ral systems, including electric fish [6]; bats [8] and barn©y@]. Spike timing appears
particularly important when the relevant information in #=reémal’'s environment changese
quickly (around30 — 300ms), on the same order of magnitude as typical interspileg-int
vals [2]. These experimental results have prompted nunsggmposals for how networks
of neurons can collectively produce various characterfstims of spiking behavior [5],
as well as theoretical studies proving that neurons thategoimformation by individual
spike times have computational advantages over neuronssigithoidal activation func-
tions (cite: Maass).

However, there are fewer proposals as to how the strengths apsgrconnections within
and between spiking populations can be learned to carry @igudi information process-
ing tasks, particularly those that change on the fast tisles¢hat makes timing important.
Learning is difficult in spiking populations because infation is directly represented on
only a temporally sparse, and spatially interacting ‘is&lithus some of the most inter-
esting examples of learning either operate with acausalante €g[9]; [7]) or punctate
rather than population codes [4].

Here we consider how a particular form of spiking network camrido perform one of the
most fundamental aspects of Bayesian inference, namelpioimy likelihood and prior
information associated with a dynamically evolving inputnstlus. As in [10], we con-
sider how a population of neurons can learn to implement arrent computation that
remaps input spikes associated with the current value ofttinailsis into output spikes
that represent the stimulus’ trajectory in a tractable ytaton-coded manner. This repre-



sentation implicitly fills in the sparse trellis, using teonplly-extended decoding kernels.
As a significant extension to that paper, we consider this irlla $piking context, using
an algorithm suggested in the field of reinforcement leayifilt to learn feedforward and
recurrent synaptic weights to optimize the fidelity of codirgso-called direct-policy re-
inforcement learning algorithm is appropriate here sir&ét(is designed to operate with
sampled processes such as spikes, and (b) the decision éramin the population to
spike at one time has an impact on what is represented at flrtugs (via the temporally
extended kernel associated with the assumed decoder foophegpion). Feedforward and
recurrent weights thus learn to embody correctly the pririkelihoodandthe decoder.

In another key departure from our earlier work, we derive #wirrent population model
using an approach similar to maximum entropy or additivelcem field models popular in
other domains, such as language modeling, in which a largarjilof features exist, and
learning involves deciding which features should be invokedhis view, the feature asso-
ciated with a neuron signals a particular relationship betvtke input and the underlying
variable, and learning decides how to instantiate popariagpike trains so that the set of
induced features convey appropriate information aboutdlevant variables over time.

In section 1, we describe the basic formulation of the maxineatmopy model in the case
of probabilistic inference about a changing stimulus. lctisa 2, we show how the Gaus-
sian process ideal observer from [10] can be adapted togeamadnstraints on the output
spikes in the recurrent population. Section 3 develops ifie@learning rule. Finally, in
section 4 we apply the plastic population to various casesfefénce in trajectories with
weaker and stronger priors.

1 MODEL FORMULATION

Our new approach is formalized as follows. The inputs to theufadipn over timeR.(T) =
R(1),R(2),..., R(T) arise in relation to the stat¥ of underlying variable(s). The state
is also a trajectoryX(T) = X(1),X(2),...,X(T). Note that eaclR is a vector, with
one entry for every neuron that provides input into the papaoih. We generally assume
that each entry is binary, representing whether the resfgantiuron spiked within the time
intervalt.

The recurrently-connected population receives affemgoiti from R, and conveys infor-
mation aboutX (¢) to downstream neurons. Consid®{(T") = S(1), S(2),...,S(T) as the
responses of the population within each time interval. Watif§t) as a binary repre-
sentation of spikes within the population, just B&) is the binary vector for incoming
spikes.

As in a standard maximum entropy, or recognition modelingvyithe inputs up to and
including timeT are viewed as data that the network can use to représghy, rather than
information that must be explained. In a departure from eotienal maximum entropy
treatments, we formulate the objective in a recursive onliragner, so that the network
makes use of its own spik&T — 1) up until time7" in addition to its inputR (T"):

P(X(T)[S(T -1} R(T)) = Y PX(T),S(T)R(T),S(T —1)) 1)
S(T)

= Y P(X(T)|S(T))P(S(T)R(T),S(T - 1)) (2)
S(T)

where the spike vecta$(T') is a stochastic random vector. The constraint that the pop-
ulation spikes convey all the information abaki{T") present in its input motivates the
conditional independence &f (T') andR(T") givenS(T') assumed in Equation 2.

The second term on the right-hand side of this equation sepits the stochastic spiking



model, which stipulates how the population spikes arise, enthié first term represents
information contained in these spikes abdi{T"). For both terms we describe a com-
mon, recursive, and online mechanism for inference. Thetlrsn involves a form of
spike response model (cite: Gerstner). The probabilityahatit j in the population will
spike depends on its internal state variable, or “membratenpial”b;(7"), which in turn
depends on the spike times of its pre-synaptic unitS'

ZZR w,,¢t—¢+225k Yt — 1) ®3)
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Here,y)() is a spike response function (SRF), which models the unweiglust-synaptic
potential (PSP) of a single spike impinging on the neuronis Thtypically a decaying
function of the time interval, so that more distant spikegeh@iminished effects. Weights
W = {w;;} andU = {uy;} describe the synaptic efficacies that modulate the heights
of the PSPs. Rather than explicitly model a balanced excitahhibitory structure (Des-
texhe, van Vreeswijk), we treat the spikes generated by thelgiiguas stochastic samples
based on these membrane potentials:

P(S(T)S(T - 1);R(T)) = HP(Sj(T)IS(T — 1);R(T)) (4)

J
P(S;(T) =1IS(T - 1);R(T)) = o(b;(T) = A +exp(=b;(T))"  (5)
The population spikes are assuntaxhditionallyindependent: these spikes will be highly
marginally correlated, but the variability will be independent givenliea population
spikes and past and current input spikes.

Note that if the SRF is a decaying exponentifla) = exp(—aa), wherea controls the
integration time constant of the neuron, then the poteh#ala simple recursive form

T):ZRi( u)z,JrZs,c — 1)unj + exp(—a)b; (T — 1) (6)

K3
which leads to a form of a stochastlc leaky integrate and ficzare withexp(—a) con-
trolling the leak. The temporal integration has an impdr&dfect in this model, allowing
it to go beyond a simple first-order Markov model, in that therent distribution over
population activities may depend on activities severagtsteps into the past.

The first term in Equation 2 represents the decoding aspextrahodel. In this paper we
adopt an interpretation of spikes that relies on a basioseepresenting( (T'):

T
POXT)IS(T) = 7 exp | 303 85(r)és(X)u(t — 1) ™)

j 7=0
where associated with each population neyrads a spatial kernep; (X).

Note that, as above, if the SRKa) = exp(—aa) involves exponential decay, then we can
expressi(T) = log P( ( )|S(T)) recursively'

Z S;( ) + exp(—a)d(T — 1)

Decoding the information contalned in the population spi€E) may thus be readily car-

ried out by downstream neurons. One potential difficulty if éixact posterior is required
is the normalization term, or partition functidfi However, in general this computation
will not be necessary. A more likely operation of comparing télative log-probabilities

assigned to two values & can be computed as follows:

log ig;— Z Si(T)[¢j(w2) — dj(21)] + exp(—)[di (T — 1) = do(T — 1]
(8)
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Figure 1. Comparison of GP and MaxEnt distributiofsp row: an inferredS is shown
in grayscale in the background. Mean of the exact inferendle thie GP is shown in
blue. Mean of the MaxEnt distribution representedSys shown in red (dash-dotted).
Bottom row: Variance of the GP distribution (blue) and the MaxEnt digttion (red). The
columns show results for different temporal convolutiomiedsy)(t) = exp(—t/7) : left

T = 2msright 7 = 30 ms. For illustration, thénset in the bottom right panel shows the
GP distribution and the green dots in the left top panel shajrthut spikeR.

2 |DEAL OBSERVATION

In [10], we explored a continuous Gaussian Process (GP) moddbash of ideal observer

to understand the statistical constraints inherent in tbblpm. Briefly, under this model,
(continuous-time) trajectorieX (¢) are generated according to a Gaussian process prior,
with a covariance functio(t — t') o« exp(—||t — t'||) specifying the degree to which

X (t') and X (t) are related, in terms of the covariance of their joint Gausdiatribution.
Different covariance functions generate different chamastic trajectories (e.g. smooth or
rough), while the mean trajectorycan capture more global tendencies such as a drift.

If the neurons generating the input spikes are independéoiniogeneous Poisson pro-
cesses with mean rates given by Gaussian tuning functioAg#h, with dense, uniform
coverage of the whole interval in whick (¢) lives (tuning centersn = (my,...,my)),
then the true, Bayesian, posterior distribution®dfT") given the whole collection of input
spikesR(T') is Gaussian with meafa(7") and variancé(T)?, where

ﬂ(T) = kT(0 — n) ﬁ(T)2 =Crr — kTClT where k = CTI(C” + 102)_1 (9)

is a kernel function that depends on the times of all the spikethe population, with
0;, being the preferred tuning value of the neuron spiking aet#mand(,,, being the
covariance functiog (¢, — t;).

Here we make use of the optimality of the GP inference to genemtstraints on the
maximum entropy decoding. Let us try to find a set of spiBéF) that when decoded
according to the log-linear model, matches the distribuiiderred by the GP as well as
possible. Let us further require that these spikes be fonstf the input spikeR.(T") and
the previousS only. We thus rewrite the GP distribution in termsS{{T"):

p(X(T)IR(T)) o< exp (—(X(T) — (T))?/20(T)?) (10)

xewp (-3 [ /t S,(T - t)w(t)] (X(T)—mj)?/202| (1)
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Figure 2: GP performance on canonical walk. The drift (cacainvalk) was included in
the GP as a mean. The shaded gray indicates the posterior distribution. grieen dots
are the spikes and the blue line is the posterior mean.

since a sum of square terms is another square itself, allggdthese constraints are met:

25 G (T)m; o2
WD) = S TP = s G = [T te) (12)
> G(T) 6@ .
In the the same way that the kernel functi&nspecify effective, prior-dependeeticoding
firing rates for the inputs in the population, the kernel fiiows [, S;(T' — t)y(t) specify
effectivedecodindfiring rates for the recurrent population. Equation 11 i fhe same as
Equation 7.

By solving Equations 12, we can examine the nature of the mzgtleen the temporal
structures of encoding and decoding, and also understancitistraint under which the
recoding in the network must operate. As there are more Jag#h(¢) than equations
once the problems has been temporally discretized, onddshape that there will be
at least one highly faithful population representationtaf posterior. Ideally, we would
furthermore find a solution to Equations 12 in terms of bin8y{). However, finding
such discrete solutions is a notoriously hard computatjoredlem, so we typically search
in a continous (but positive) space, via a nfift) = o(b;(t)). Itis no accident that this can
be seen as the mean field version of the network studied abweed, in future work, we
would like to search forecursively-specifiablsolutions, for which, at least approximately,
an optimizingb; () will be found that satisfies an equation exactly like Equaion

The two examples shown in Figure 1 show that it is indeed plesgilespite local optima,
to find a set ofS(¢) that faithfully represent the posterior. However, the degoeghich
this is possible depends on the match between the kefriglsind¢(X) and the GP. For
example, in the right column we show that the representagterirates if)(¢) is much
slower than the typical timescale &f(¢).

3 ONLINE LEARNING AND INFERENCE

This Gaussian Process formulation acts as an ideal obsentef overall aim of convey-

ing the proper posterior distribution ov&tr(7") contained inR(T"). It thereby formalizes

the inference task that our recurrently conected populaifespiking neurons interpreted
as in section 1 has to learn to solve. In the network, infezéneolves producing and
interpreting population spikes; based on the model defibete inference is direct.

We formulate the learning objective of the system based oneasore of the qual-
ity of the posterior distribution oveX (7T') conveyed by the population spikes. If
the true value ofX(T') is known, then this objective is simply to maximiZze =
>t log P(X*(t)|R(T),S(T — 1)). In [10], we considered an objective of this sort, but



in a mean-field formulation of the network in which we had acdesomething closer to
the membrane potentials in the populatiéf()) rather than just the spikes. Here, we turn
to an alternative form of learning, namely reinforcemeatiéng, in which spikes are seen
as the actions of independent agenig the neurons), and the value of these actions are
evaluated collectively in terms of the quality of the presamd future population represen-
tation which they produce. The population spiking prob#bgiP(S(¢)|R(T),S(T — 1))

(see Equation 5) can be thought of as defining a stochasiicypgbhat maps the observa-
tionsR(T), S(T — 1) into the probability distributions over the output unithelpolicy is
directly parameterized by the weigh€ andU, as well asx, all of which we summarize
as).

The instantaneouseward signal at timd’, assuming access to the true stimulus state
X*(T)is:
v(©,t) = log P(X*(T)|R(T),S(T — 1)) (13)

Given an objective function based tomg runaverage reward (7)) = 1/T 23;1 v(Q, 1),
the gradient with respect 1@ of the expected reward is not computable in closed form
since the output spikes are stochastically sampled. Wetrgsan approximate gradient
approach (called a direct policy method) in which the gradigestimated via simulation
and the policy is improved by adjusting the parameters irgtiaglient direction [1]. The
gradient with respect tf is:
0J(Iy (T-1)0J(T—-1) 1

0 - T 20 + T’U(T)Z(T) (14)
where the eligibility trace(T') that relates the output spikB$1") with the weightsW and
U is defined as

The gradient for each of the parameter$litakes the form:
o(T)Ri(T)[S;(T) — o (b;(T))] (15)

Learning therefore depends on correlations between therdesignal and pre-synaptic
spikes. The magnitude of the gradient is also modulate8§¥") — o(b;(T")), which is
maximized when the actions (whether or not to spike) are umgtsdde. Not unsurpris-
ingly, learning stops when the distribution of responsesheffeatures under the model
match their empirical distribution, as in standard randatdfand maxent models.

4 EXPERIMENTS

We present results from three experiments designed to exfile capacity of our model
in a simple, controllable paradigm involving inference aba 1-D variableX in a case in
which input spikes are noisy and sparse. We applied the lggmodel exactly as above,
except that the recurrent self-connectianjs are forced to be negative, to implement a
crude form of refractory period where a neuron that spikedattime step cannot spike at
the next. The state space &fis defined byZ discrete states, for ease of simulation. For
the temporal kerna)(t) = exp(—a), the value ofx is derived empirically from the data,
defined based on the mean persistence of the valigiofthe input sequences.

Our first experiment involves a simple canonical walk thdbfet a fixed, repetitive trajec-
tory through time. The learned temporal decay is rapid, abttte decoded positiaki ()

depends only on spikes in the current time bin. The canoniald is generated according
to: X (t+1) = [tx* A +¢€(t)] mod 2—1, whereA = 2/N ande(t) is mean-zero Gaussian
noise. Figure 3 shows that the recurrent weights have leahgeckpetitive pattern in the
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Figure 3: Experiment 1: Canonical Walk: N=25; M=50. Z=25.8lencanonical walk that
follows a fixed, repetitive trajectory through time

trajectory. The network compensates for the lack of tenlpotegration at the output and
the sparse input spikes that give rise to uncertainty, atitfdifly reconstructs the position
over time. In particular, it infers a good model of the diegttomponent of the random
walk.

The consequence of forced negative self-connectionsasttiireflected in the output spik-
ing activity. Figure 3 shows that no neuron fires repetitifelyany two timesteps. As such,
neighboring neurons (defined as neurons with similar sglgcfor position) cooperate to
produce a good approximation. The network therefore clegrie input and fills in for

missing input spikes.
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Figure 4: Experiment 2: Random Walk: N=25; M=30. Z=25. Toy:|&ough walk and
decoded distribution. Top right: Smooth walk and decodsttibution. Below: Mean and
variances for the corresponding rough and smooth walks.

The second experiment explored the effect of temporal ratemn in encoding. Two ran-

dom walks in 1-D space were generated with varying degrees obttmess, one rough
(s.dev.=0.4), the other smooth (sd=0.1) (see Figure 4). |d&med decay constant was
correspondingly fast for the rough walk; slow for the smootte. Under a sparse input
spike regime, the system produced spikes that lead to arjmygteat matches the true walk



well. This is due both to the learned recurrent weights andrtegation time constaat.
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Figure 5: Experiment 3: Inferring velocity of the stimulusti the station position infor-
mation. Top: Motion in Left direction. Below: Synaptic weighand temporal kernels with
fast and slow decay for position and direction respectively

In the third experiment, we show how a dynamic function of tti@slus (direction) can
be inferred from encoding of static information (positioWye focus on the simple case
of rightward (R) or leftward (L) motion of a stimulus in 1-Da&pe, with a constant speed.
Each neuron in the output population encodes both positidrdaection of motion. In our
approach, this implies particular 2-dimensional kerrggjsfor each output neuron, where
i indexes position angl, the direction. As a simple setup to allow easy interpreteicthe
synaptic weights learned by network, we have 2 subpopulateach coding for motion in
one specific direction. Figure 5 shows that the feedforwardtsito 2 neurons coding the
same position are the same, and only the lateral weightagligsth the direction for which
they are coding.

5 DISCUSSION

In this paper we have shown approached the relationship beemeedling and decoding in
verious ways. In particular, we have shown a number of issustise in neural recoding
of information and suggested neurally plausible solutiolmsparticular, we have drawn
attention the structure of the code and pointed to a way infmdigimple yet very powerful
code could be maintained for probabilistic computatiomsulghout the brain.
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