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Abstract

We propose a reinforcement based framework for learning in recurrently
connected populations of spiking neurons. Learning makes use of a re-
ward signal, which conveys information about the quality of probabilistic
inference based on the population spikes, and yet requires predominantly
local information to specify synaptic plasticity. We applythis framework
to the canonical example of probabilistic inference, namely the Bayesian
combination of prior and likelihood about an input, but in the richest
case of rapidly changing stimuli sparsely sampled by input spikes and
re-represented in a plastic spiking population. We developthe ideal ob-
server, which here involves inference in a Gaussian process, in a form
that bears directly on the spiking network and compare theirrelative re-
sponses.

The timing of individual spikes is known to play a critical role in a wide variety of neu-
ral systems, including electric fish [6]; bats [8] and barn owls [3]. Spike timing appears
particularly important when the relevant information in theanimal’s environment changese
quickly (around

�✂✁☎✄✆�✂✁✂✁
ms), on the same order of magnitude as typical interspike inter-

vals [2]. These experimental results have prompted numerous proposals for how networks
of neurons can collectively produce various characteristic forms of spiking behavior [5],
as well as theoretical studies proving that neurons that convey information by individual
spike times have computational advantages over neurons withsigmoidal activation func-
tions (cite: Maass).

However, there are fewer proposals as to how the strengths of synaptic connections within
and between spiking populations can be learned to carry out difficult information process-
ing tasks, particularly those that change on the fast timescales that makes timing important.
Learning is difficult in spiking populations because information is directly represented on
only a temporally sparse, and spatially interacting ‘trellis’; thus some of the most inter-
esting examples of learning either operate with acausal inference (eg [9]; [7]) or punctate
rather than population codes [4].

Here we consider how a particular form of spiking network can learn to perform one of the
most fundamental aspects of Bayesian inference, namely combining likelihood and prior
information associated with a dynamically evolving input stimulus. As in [10], we con-
sider how a population of neurons can learn to implement a recurrent computation that
remaps input spikes associated with the current value of the stimulus into output spikes
that represent the stimulus’ trajectory in a tractable, population-coded manner. This repre-



sentation implicitly fills in the sparse trellis, using temporally-extended decoding kernels.
As a significant extension to that paper, we consider this in a fully spiking context, using
an algorithm suggested in the field of reinforcement learning [1] to learn feedforward and
recurrent synaptic weights to optimize the fidelity of coding. A so-called direct-policy re-
inforcement learning algorithm is appropriate here since (a) it is designed to operate with
sampled processes such as spikes, and (b) the decision for a neuron in the population to
spike at one time has an impact on what is represented at futuretimes (via the temporally
extended kernel associated with the assumed decoder for the population). Feedforward and
recurrent weights thus learn to embody correctly the prior, the likelihoodand the decoder.

In another key departure from our earlier work, we derive the recurrent population model
using an approach similar to maximum entropy or additive random field models popular in
other domains, such as language modeling, in which a large library of features exist, and
learning involves deciding which features should be invoked. In this view, the feature asso-
ciated with a neuron signals a particular relationship between the input and the underlying
variable, and learning decides how to instantiate population spike trains so that the set of
induced features convey appropriate information about therelevant variables over time.

In section 1, we describe the basic formulation of the maximumentropy model in the case
of probabilistic inference about a changing stimulus. In section 2, we show how the Gaus-
sian process ideal observer from [10] can be adapted to provide constraints on the output
spikes in the recurrent population. Section 3 develops the online learning rule. Finally, in
section 4 we apply the plastic population to various cases of inference in trajectories with
weaker and stronger priors.

1 MODEL FORMULATION

Our new approach is formalized as follows. The inputs to the population over time�✂✁☎✄✝✆✟✞✠ ✁☛✡☞✆✍✌ ✠ ✁✏✎✑✆✍✌✓✒✔✒✕✒✕✌ ✠ ✁☎✄✝✆ arise in relation to the state✖ of underlying variable(s). The state
is also a trajectory:✗✘✁☎✄✙✆✚✞✛✖✜✁☛✡✢✆✣✌✤✖✥✁✏✎✑✆✣✌✦✒✕✒✔✒✕✌✤✖✥✁✧✄✝✆ . Note that each

✠
is a vector, with

one entry for every neuron that provides input into the population. We generally assume
that each entry is binary, representing whether the respective neuron spiked within the time
interval ★ .
The recurrently-connected population receives afferent input from

✠
, and conveys infor-

mation about✖✥✁☎★✤✆ to downstream neurons. Consider✩✪✁✧✄✝✆✫✞✭✬✮✁☛✡☞✆✍✌✯✬✰✁✱✎✑✆✣✌✦✒✕✒✔✒✕✌✯✬✰✁☎✄✝✆ as the
responses of the population within each time interval. We treat ✬✮✁☎★✤✆ as a binary repre-
sentation of spikes within the population, just as

✠ ✁☎★✤✆ is the binary vector for incoming
spikes.

As in a standard maximum entropy, or recognition modeling view, the inputs up to and
including time✄ are viewed as data that the network can use to represent✖✥✁✧✄✝✆ , rather than
information that must be explained. In a departure from conventional maximum entropy
treatments, we formulate the objective in a recursive onlinemanner, so that the network
makes use of its own spikes✩✲✁☎✄ ✄ ✡☞✆ up until time ✄ in addition to its inputs�✂✁☎✄✝✆ :✳ ✁☎✖✥✁✧✄✝✆✦✴ ✩✲✁☎✄ ✄ ✡☞✆✍✵✶�✂✁☎✄✝✆✤✆✷✞ ✸✹✻✺✔✼✾✽

✳ ✁☎✖✥✁✧✄✝✆✍✌✿✬✮✁☎✄✙✆✦✴ �✘✁☎✄✙✆✯✌✿✩✲✁☎✄ ✄ ✡☞✆✤✆ (1)

✞ ✸✹✻✺✔✼✾✽
✳ ✁☎✖✥✁✧✄✝✆✦✴ ✩✲✁☎✄✝✆☛✆ ✳ ✁✱✬✮✁✧✄✝✆✦✴ �✘✁✧✄✝✆✿✌✍✩✪✁✧✄ ✄ ✡✢✆✤✆ (2)

where the spike vector✬✮✁☎✄✙✆ is a stochastic random vector. The constraint that the pop-
ulation spikes convey all the information about✖✥✁☎✄✝✆ present in its input motivates the
conditional independence of✖✥✁☎✄✝✆ and �✘✁✧✄✝✆ given ✩✲✁☎✄✝✆ assumed in Equation 2.

The second term on the right-hand side of this equation represents the stochastic spiking



model, which stipulates how the population spikes arise, while the first term represents
information contained in these spikes about✖✥✁☎✄✙✆ . For both terms we describe a com-
mon, recursive, and online mechanism for inference. The first term involves a form of
spike response model (cite: Gerstner). The probability thata unit � in the population will
spike depends on its internal state variable, or “membrane potential” ✁✄✂ ✁☎✄✝✆ , which in turn
depends on the spike times of its pre-synaptic units:✁☎✂✑✁☎✄✝✆✪✞ ✸✝✆ ✼

✸✞✠✟☛✡ ✠ ✆ ✁✌☞✻✆✎✍ ✆ ✂✑✏✙✁☎★ ✄ ☞✻✆✓✒ ✸✕✔ ✼
✸✞✑✟✗✖ ✬ ✔ ✁✌☞✻✆✙✘ ✔ ✂✚✏✝✁☎★ ✄ ☞✻✆ (3)

Here, ✏✙✁✱✆ is a spike response function (SRF), which models the unweighted post-synaptic
potential (PSP) of a single spike impinging on the neuron. This is typically a decaying
function of the time interval, so that more distant spikes have diminished effects. Weights✛ ✞✢✜✠✍ ✆ ✂✤✣ and ✥ ✞✦✜✠✘ ✔ ✂✧✣ describe the synaptic efficacies that modulate the heights
of the PSPs. Rather than explicitly model a balanced excitatory-inhibitory structure (Des-
texhe, van Vreeswijk), we treat the spikes generated by the population as stochastic samples
based on these membrane potentials:✳ ✁✱✬✮✁✧✄✝✆✦✴ ✩✲✁☎✄ ✄ ✡☞✆✿✵✶�✂✁☎✄✝✆✶✆ ✞ ★ ✂ ✳ ✁✏✬✝✂ ✁☎✄✝✆✓✴ ✩✲✁☎✄ ✄ ✡✢✆✣✵✶�✘✁✧✄✝✆☛✆ (4)

✳ ✁✏✬ ✂ ✁☎✄✙✆✪✞ ✡ ✴ ✩✲✁☎✄ ✄ ✡☞✆✿✵✶�✂✁☎✄✝✆✶✆ ✞ ✩✟✁✪✁ ✂ ✁☎✄✙✆✪✞ ✁☛✡✫✒✭✬✄✮✰✯ ✁ ✄ ✁ ✂ ✁☎✄✙✆✤✆✤✆✲✱ ✡ (5)
The population spikes are assumedconditionallyindependent: these spikes will be highly
marginally correlated, but the variability will be independent given earlier population
spikes and past and current input spikes.

Note that if the SRF is a decaying exponential,✏✝✁✴✳ ✆ ✞✵✬✄✮✰✯ ✁ ✄✷✶ ✳ ✆ , where
✶

controls the
integration time constant of the neuron, then the potentialhas a simple recursive form✁✸✂ ✁☎✄✝✆✟✞ ✸✹✆ ✠ ✆ ✁✧✄✝✆✙✍ ✆ ✂✺✒ ✸✤✔ ✬ ✔ ✁✧✄ ✄ ✡☞✆✙✘ ✔ ✂✻✒✭✬✄✮✰✯ ✁ ✄✷✶ ✆☎✁☎✂ ✁☎✄ ✄ ✡✢✆ (6)

which leads to a form of a stochastic leaky integrate and fire neuron, with ✬✼✮✽✯ ✁ ✄✷✶ ✆ con-
trolling the leak. The temporal integration has an important effect in this model, allowing
it to go beyond a simple first-order Markov model, in that the current distribution over
population activities may depend on activities several time-steps into the past.

The first term in Equation 2 represents the decoding aspect ofour model. In this paper we
adopt an interpretation of spikes that relies on a basis set for representing✖✥✁☎✄✙✆ :

✳ ✁✧✖✥✁☎✄✙✆✦✴ ✩✪✁✧✄✝✆ ✆✲✞ ✡✾ ✬✄✮✰✯ ✿❀
✸ ✂ ✼
✸✞✠✟✗❁ ✬✝✂ ✁✌☞✻✆☎❂✹✂ ✁☎✖✂✆✎✏✝✁✧★ ✄ ☞✻✆✪❃❄ (7)

where associated with each population neuron� , is a spatial kernel❂❅✂ ✁☎✖✂✆ .
Note that, as above, if the SRF✏✙✁❆✳ ✆✪✞❇✬✄✮✰✯ ✁ ✄✷✶ ✳ ✆ involves exponential decay, then we can
express❈✾✁☎✄✝✆✪✞❇❉❋❊✤● ✳ ✁✧✖✥✁☎✄✝✆✓✴ ✩✲✁☎✄✙✆☛✆ recursively:❈✾✁☎✄✝✆✟✞ ✸ ✂ ✬✝✂ ✁☎✄✝✆☎❂✹✂ ✁☎✖✂✆✗✒✭✬✄✮✰✯ ✁ ✄✷✶ ✆❍❈ ✁✧✄ ✄ ✡☞✆
Decoding the information contained in the population spikes✩✪✁✧✄✝✆ may thus be readily car-
ried out by downstream neurons. One potential difficulty if theexact posterior is required
is the normalization term, or partition function

✾
. However, in general this computation

will not be necessary. A more likely operation of comparing the relative log-probabilities
assigned to two values of✖ can be computed as follows:❉❋❊✤● ✳ ✁❆■ ✡ ✁☎✄✝✆✓✴ ✩✲✁☎✄✝✆✤✆✳ ✁❆■ ✖ ✁☎✄✝✆✓✴ ✩✲✁☎✄✝✆✤✆ ✞ ✸ ✂ ✬✝✂ ✁✧✄✝✆✄❏ ❂✹✂ ✁✌■ ✖ ✆ ✄ ❂✰✂ ✁❆■ ✡ ✆▲❑✽✒✭✬✄✮✰✯ ✁ ✄✷✶ ✆✼❏ ❈ ✡ ✁☎✄ ✄ ✡☞✆ ✄ ❈ ✖ ✁☎✄ ✄ ✡✢✆▲❑

(8)
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Figure 1: Comparison of GP and MaxEnt distributions.Top row: an inferred✩ is shown
in grayscale in the background. Mean of the exact inference with the GP is shown in
blue. Mean of the MaxEnt distribution represented by✩ is shown in red (dash-dotted).
Bottom row: Variance of the GP distribution (blue) and the MaxEnt distribution (red). The
columns show results for different temporal convolution kernels ✏✝✁☎★✤✆✝✞ ✬✄✮✰✯ ✁ ✄ ★ ✁ ☞✻✆ : left☞ ✞ ✎ msright ☞ ✞ �✂✁

ms. For illustration, theinset in the bottom right panel shows the
GP distribution and the green dots in the left top panel show the input spikes� .

2 IDEAL OBSERVATION

In [10], we explored a continuous Gaussian Process (GP) model asa form of ideal observer
to understand the statistical constraints inherent in the problem. Briefly, under this model,
(continuous-time) trajectories✖✥✁☎★✤✆ are generated according to a Gaussian process prior,
with a covariance function✂✪✁☎★ ✄ ★☎✄✕✆✝✆ ✬✄✮✰✯ ✁ ✄✝✞ ★ ✄ ★✟✄ ✞✡✠ ✆ specifying the degree to which✖✥✁✧★ ✄ ✆ and ✖✜✁☎★✤✆ are related, in terms of the covariance of their joint Gaussian distribution.
Different covariance functions generate different characteristic trajectories (e.g. smooth or
rough), while the mean trajectory☛ can capture more global tendencies such as a drift.

If the neurons generating the input spikes are independent inhomogeneous Poisson pro-
cesses with mean rates given by Gaussian tuning functions in✖✥✁☎★✤✆ , with dense, uniform
coverage of the whole interval in which✖✜✁☎★✤✆ lives (tuning centers☞ ✞ ✁✍✌ ✡ ✌✓✒✦✒✓✒✣✌✎✌✑✏ ✆ ),
then the true, Bayesian, posterior distribution of✖✥✁✧✄✝✆ given the whole collection of input
spikes�✘✁✧✄✝✆ is Gaussian with mean✒✓ ✁☎✄✝✆ and variance✒✔ ✁✧✄✝✆ ✖ , where✒✓ ✁☎✄✝✆✟✞✖✕ ✼ ✁✘✗✗ ✗ ✄ ☛ ✆ ✒✔ ✁☎✄✝✆ ✖ ✞✙✂ ✼✾✼ ✄ ✕ ✼ ✂✛✚ ✼ where ✕ ✞✙✂ ✼ ✚☛✁✜✂✛✚✢✚ ✒✤✣✄✩ ✖ ✆ ✱ ✡ (9)

is a kernel function that depends on the times of all the spikes in the population, with✗✦✥✍✧ being the preferred tuning value of the neuron spiking at time ★ ✆ and ✂✛✥✩★✪✥✩✫ being the
covariance function✂✪✁☎★ ✔ ✄ ★✬✚✧✆ .
Here we make use of the optimality of the GP inference to generateconstraints on the
maximum entropy decoding. Let us try to find a set of spikes✩✲✁☎✄✝✆ that when decoded
according to the log-linear model, matches the distribution inferred by the GP as well as
possible. Let us further require that these spikes be functions of the input spikes�✘✁✧✄✝✆ and
the previous✩ only. We thus rewrite the GP distribution in terms of✩✪✁✧✄✝✆ :✭ ✁☎✖✥✁✧✄✝✆✦✴ �✘✁✧✄✝✆ ✆✮✆ ✬✼✮✰✯✰✯ ✄ ✁✧✖✥✁☎✄✝✆ ✄ ✒✓ ✁☎✄✝✆✶✆ ✖ ✁ ✎✱✒✔ ✁✧✄✝✆ ✖✳✲ (10)✆ ✬✼✮✰✯ ✴✵

✄ ✸ ✂ ✶✸✷ ✥ ✬ ✂ ✁✧✄ ✄ ★✤✆✙✏✙✁☎★✤✆✬✹ ✁✧✖✥✁☎✄✙✆ ✄ ✌ ✂ ✆ ✖ ✁ ✎✧✩ ✖✡✺✻ (11)
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Figure 2: GP performance on canonical walk. The drift (canonical walk) was included in
the GP as a mean☛ . The shaded gray indicates the posterior distribution. Thegreen dots
are the spikes and the blue line is the posterior mean.

since a sum of square terms is another square itself, all provided these constraints are met:✒✓ ✁✧✄✝✆✟✞✁� ✂✄✂ ✂ ✁☎✄✙✆✬✌ ✂
�

✔ ✂ ✔ ✁☎✄✙✆ ✒✔ ✁☎✄✙✆ ✖ ✞ ✩ ✖
� ✂✄✂ ✂ ✁☎✄✙✆ ✂ ✂ ✁✧✄✝✆✪✞ ✷ ✥ ✬ ✂ ✁✧✄ ✄ ★✤✆✎✏✝✁☎★✤✆ (12)

In the the same way that the kernel functions✕ specify effective, prior-dependent,encoding
firing rates for the inputs in the population, the kernel functions ☎ ✥ ✬ ✆ ✁☎✄ ✄ ★✤✆✎✏✝✁✧★✤✆ specify
effectivedecodingfiring rates for the recurrent population. Equation 11 is just the same as
Equation 7.

By solving Equations 12, we can examine the nature of the matchbetween the temporal
structures of encoding and decoding, and also understand the constraint under which the
recoding in the network must operate. As there are more variables ✬ ✆ ✁☎★✤✆ than equations
once the problems has been temporally discretized, one should hope that there will be
at least one highly faithful population representation of the posterior. Ideally, we would
furthermore find a solution to Equations 12 in terms of binary✬ ✆ ✁☎★✤✆ . However, finding
such discrete solutions is a notoriously hard computational problem, so we typically search
in a continous (but positive) space, via a map✬ ✆ ✁☎★✤✆✪✞ ✩✟✁✴✁ ✆ ✁✧★✤✆✤✆ . It is no accident that this can
be seen as the mean field version of the network studied above.Indeed, in future work, we
would like to search forrecursively-specifiablesolutions, for which, at least approximately,
an optimizing✁✸✂✑✁☎★✤✆ will be found that satisfies an equation exactly like Equation3.

The two examples shown in Figure 1 show that it is indeed possible, despite local optima,
to find a set of✬✮✁☎★✤✆ that faithfully represent the posterior. However, the degreeto which
this is possible depends on the match between the kernels✏✙✁☎★✤✆ and ❂ ✁✧✖✂✆ and the GP. For
example, in the right column we show that the representation deteriorates if✏✝✁☎★✤✆ is much
slower than the typical timescale of✖✥✁☎★✤✆ .
3 ONLINE LEARNING AND INFERENCE

This Gaussian Process formulation acts as an ideal observer for the overall aim of convey-
ing the proper posterior distribution over✖✥✁✧✄✝✆ contained in�✂✁☎✄✝✆ . It thereby formalizes
the inference task that our recurrently conected population of spiking neurons interpreted
as in section 1 has to learn to solve. In the network, inference involves producing and
interpreting population spikes; based on the model defined above, inference is direct.

We formulate the learning objective of the system based on a measure of the qual-
ity of the posterior distribution over✖✥✁☎✄✝✆ conveyed by the population spikes. If
the true value of✖✥✁☎✄✙✆ is known, then this objective is simply to maximize✆ ✞
� ✥ ❉❋❊✤● ✳ ✁✧✖✞✝ ✁✧★✤✆✦✴ �✘✁✧✄✝✆✍✌✍✩✪✁✧✄ ✄ ✡✢✆✶✆ . In [10], we considered an objective of this sort, but



in a mean-field formulation of the network in which we had accessto something closer to
the membrane potentials in the population (✁ ✂✑✁☎★✤✆ ) rather than just the spikes. Here, we turn
to an alternative form of learning, namely reinforcement learning, in which spikes are seen
as the actions of independent agents (viz the neurons), and the value of these actions are
evaluated collectively in terms of the quality of the present and future population represen-
tation which they produce. The population spiking probabilities

✳ ✁✱✬✮✁✧★✤✆✦✴ �✘✁☎✄✙✆✿✌✿✩✲✁☎✄ ✄ ✡✢✆✤✆
(see Equation 5) can be thought of as defining a stochastic policy that maps the observa-
tions �✘✁✧✄✝✆✍✌✍✩✪✁✧✄ ✄ ✡✢✆ into the probability distributions over the output units. The policy is
directly parameterized by the weights

✛
and ✥ , as well as

✶
, all of which we summarize

as � .

The instantaneousreward signal at time✄ , assuming access to the true stimulus state✖✞✝ ✁☎✄✝✆ is: ✁ ✁✂�✙✌✤★✤✆✪✞❇❉❋❊✤● ✳ ✁✧✖ ✝ ✁✧✄✝✆✦✴ �✘✁✧✄✝✆✿✌✍✩✪✁✧✄ ✄ ✡✢✆✶✆ (13)

Given an objective function based onlong runaverage reward✄✪✁✧✄✝✆✪✞ ✡ ✁ ✄ � ✼✥ ✟ ✡ ✁ ✁✂�✙✌✤★✤✆ ,the gradient with respect to� of the expected reward is not computable in closed form
since the output spikes are stochastically sampled. We resort to an approximate gradient
approach (called a direct policy method) in which the gradient is estimated via simulation
and the policy is improved by adjusting the parameters in thegradient direction [1]. The
gradient with respect to� is:☎ ✄✟✁✧✄✝✆☎ � ✞ ✁✧✄

✄ ✡☞✆
✄

☎ ✄✪✁☎✄ ✄ ✡☞✆☎ � ✒ ✡✄ ✁ ✁☎✄✝✆✝✆ ✁✧✄✝✆ (14)

where the eligibility trace✆ ✁✧✄✝✆ that relates the output spikes✩✲✁☎✄✝✆ with the weights
✛

and✥ is defined as

✆✾✁☎✄✝✆✟✞✟✞✠✆✾✁☎✄ ✄ ✡☞✆✓✒ ✡✭ ✁☎✄✝✆ ☎ ✭ ✁☎✄✝✆☎ � ✌ ✡✭ ✁☎✄✝✆ ☎ ✭ ✁☎✄✝✆☎ � ✞ ✸ ✂ ☎ ✁ ✂ ✁✧✄✝✆☎ � ✁✏✬ ✂ ✁☎✄✙✆ ✄ ✩✟✁✪✁ ✂ ✁☎✄✝✆✶✆✤✆
The gradient for each of the parameters in� takes the form:✁ ✁✧✄✝✆ ✠ ✆ ✁☎✄✝✆✼❏ ✬✝✂✑✁✧✄✝✆ ✄ ✩✟✁✪✁☎✂ ✁✧✄✝✆✤✆✙❑ (15)

Learning therefore depends on correlations between the reward signal and pre-synaptic
spikes. The magnitude of the gradient is also modulated by✬ ✂ ✁✧✄✝✆ ✄ ✩✟✁✴✁☎✂ ✁✧✄✝✆✤✆ , which is
maximized when the actions (whether or not to spike) are unpredictable. Not unsurpris-
ingly, learning stops when the distribution of responses of the features under the model
match their empirical distribution, as in standard random field and maxent models.

4 EXPERIMENTS

We present results from three experiments designed to explore the capacity of our model
in a simple, controllable paradigm involving inference about a 1-D variable✖ in a case in
which input spikes are noisy and sparse. We applied the learning model exactly as above,
except that the recurrent self-connections✘❅✂✙✂ are forced to be negative, to implement a
crude form of refractory period where a neuron that spiked at one time step cannot spike at
the next. The state space of✖ is defined by

✾
discrete states, for ease of simulation. For

the temporal kernel✏✙✁☎★✤✆✮✞ ✬✄✮✰✯ ✁ ✄✷✶ ✆ , the value of
✶

is derived empirically from the data,
defined based on the mean persistence of the value of✖ in the input sequences.

Our first experiment involves a simple canonical walk that follows a fixed, repetitive trajec-
tory through time. The learned temporal decay is rapid, so that the decoded position✖✥✁☎✄✙✆
depends only on spikes in the current time bin. The canonicalwalk is generated according
to: ✖✜✁☎★ ✒ ✡☞✆✟✞ ❏ ★☛✡✠☞✭✒✍✌✢✁✧★✤✆▲❑✏✎ ❊✒✑ ✎ ✄ ✡ , where☞ ✞ ✎ ✁✔✓

and ✌☞✁✧★✤✆ is mean-zero Gaussian
noise. Figure 3 shows that the recurrent weights have learned the repetitive pattern in the



Time

S
p

a
c
e

Input Spikes

5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

S
p

a
ce

Approximate Posterior Distribution

5 10 15 20 25 30 35 40 45 50

Time

O
u

tp
u

t 
N

e
u

ro
n

s

Output Spiking Activity

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50
5 10 15 20 25

0.7

0.75

0.8

0.85

0.9

0.95

1

Space

E
n

e
rg

y

Spatial Kernel

Input Neurons

O
u

tp
u

t 
N

e
u

ro
n

s

Forward Weights

5 10 15 20 25

5

10

15

20

25

30

35

40

45

50 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Output Neurons

O
u

tp
u

t 
N

e
u

ro
n

s

Lateral Weights

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

S
p

a
c
e

True, Approximated Trajectories

5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

True
Approximated

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

V
a

ri
a

n
c
e

Variance of Approx. Distribution

Figure 3: Experiment 1: Canonical Walk: N=25; M=50. Z=25.Simple canonical walk that
follows a fixed, repetitive trajectory through time

trajectory. The network compensates for the lack of temporal integration at the output and
the sparse input spikes that give rise to uncertainty, and faithfully reconstructs the position
over time. In particular, it infers a good model of the directed component of the random
walk.

The consequence of forced negative self-connections is directly reflected in the output spik-
ing activity. Figure 3 shows that no neuron fires repetitivelyfor any two timesteps. As such,
neighboring neurons (defined as neurons with similar selectivity for position) cooperate to
produce a good approximation. The network therefore cleansup the input and fills in for
missing input spikes.
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Figure 4: Experiment 2: Random Walk: N=25; M=30. Z=25. Top left: Rough walk and
decoded distribution. Top right: Smooth walk and decoded distribution. Below: Mean and
variances for the corresponding rough and smooth walks.

The second experiment explored the effect of temporal integration in encoding. Two ran-
dom walks in 1-D space were generated with varying degrees of smoothness, one rough
(s.dev.=0.4), the other smooth (sd=0.1) (see Figure 4). Thelearned decay constant was
correspondingly fast for the rough walk; slow for the smoothone. Under a sparse input
spike regime, the system produced spikes that lead to a posterior that matches the true walk



well. This is due both to the learned recurrent weights and the integration time constant
✶

.
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Figure 5: Experiment 3: Inferring velocity of the stimulus from the station position infor-
mation. Top: Motion in Left direction. Below: Synaptic weights and temporal kernels with
fast and slow decay for position and direction respectively.

In the third experiment, we show how a dynamic function of the stimulus (direction) can
be inferred from encoding of static information (position). We focus on the simple case
of rightward (R) or leftward (L) motion of a stimulus in 1-D space, with a constant speed.
Each neuron in the output population encodes both position and direction of motion. In our
approach, this implies particular 2-dimensional kernels❂ ✆ ✂ for each output neuron, where
�

indexes position and� , the direction. As a simple setup to allow easy interpretation of the
synaptic weights learned by network, we have 2 subpopulations, each coding for motion in
one specific direction. Figure 5 shows that the feedforward weights to 2 neurons coding the
same position are the same, and only the lateral weights distinguish the direction for which
they are coding.

5 DISCUSSION

In this paper we have shown approached the relationship betweenencoding and decoding in
verious ways. In particular, we have shown a number of issues that arise in neural recoding
of information and suggested neurally plausible solutions. In particular, we have drawn
attention the structure of the code and pointed to a way in which a simple yet very powerful
code could be maintained for probabilistic computations throughout the brain.
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