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ABSTRACT

Alcohol dependence is a mental disorder that has been associated with an imbalance in behavioral control favoring
model-free habitual over model-based goal-directed strategies. It is as yet unknown, however, whether such an
imbalance reflects a predisposing vulnerability or results as a consequence of repeated and/or excessive alcohol
exposure. We, therefore, examined the association of alcohol consumption with model-based goal-directed and
model-free habitual control in 188 18-year-old social drinkers in a two-step sequential decision-making task while
undergoing functional magnetic resonance imaging before prolonged alcohol misuse could have led to severe
neurobiological adaptations. Behaviorally, participants showed a mixture of model-free and model-based decision-
making as observed previously. Measures of impulsivity were positively related to alcohol consumption. In contrast,
neither model-free nor model-based decision weights nor the trade-off between them were associated with alcohol
consumption. There were also no significant associations between alcohol consumption and neural correlates of
model-free or model-based decision quantities in either ventral striatum or ventromedial prefrontal cortex. Exploratory
whole-brain functional magnetic resonance imaging analyses with a lenient threshold revealed early onset of drinking
to be associated with an enhanced representation of model-free reward prediction errors in the posterior putamen.
These results suggest that an imbalance between model-based goal-directed and model-free habitual control might
rather not be a trait marker of alcohol intake per se.
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INTRODUCTION

The underlying mechanisms of developing alcohol
dependence are not fully resolved despite extensive
research over the past decades (e.g. Jensen, Johnson &
Redish 2008; Huys et al. 2016). Among numerous
theoretical approaches, a dual-systems account has been
used to explain the development of alcohol dependence
(Everitt & Robbins 2013). In this account, alcohol
consumption is assumed to be initially goal-directed,
which is characterized by knowledge of the contingency
between an action (e.g. alcohol intake) and its conse-
quence (e.g. relaxation and euphoria) and an incentive

(motivational) value of this consequence. However, it
has been argued that with successive repetitions alcohol
consumption may first become stimulus-driven and
dissociated from its actual consequences, referred to as
habitual, and later on compulsive (Tiffany 1990; Everitt
& Robbins 2013). In general, these dual-systems
accounts hypothesize goal-directed and habitual control
to concur and be implemented in separate but interacting
and/or competing neural circuits (Dayan & Dolan 2013;
Huys et al. 2014).

The standard approach to investigate goal-directed
and habitual behavior experimentally is by using
outcome-devaluation paradigms (e.g. Adams & Dickinson
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1981; de Wit et al. 2007). Goal-directed control can
adapt behavior to changes in the value of an outcome
before experiencing the action–outcome association,
whereas habitual control needs to experience the
devalued outcome before being able to adapt. The
distinction between goal-directed and habitual choices
maps onto a theoretical distinction between prospective
model-based (MB) and retrospective model-free (MF)
valuation. The 2-Step task, a two-stage Markov decision
problem (Daw et al. 2011), operationalizes this distinc-
tion and putatively allows the two components to be
measured in humans (Daw, Dayan & Niv 2005; Dayan
& Dolan 2013; Friedel et al. 2014; Gillan et al. 2015).

In MF reinforcement learning (RL), subjective values
for state-action pairs are updated by reward prediction
errors (RPEs), which encode the difference between
expected and received outcomes (Barto & Sutton 1998;
Dickinson & Schultz 2000). This updating process
happens when an action–outcome association is
experienced and typically needs multiple repetitions to
change state-action values and thereby action policies.
Therefore, MF RL shares its retrospective, inflexible, but
computationally cheap nature with habitual behavioral
control. In contrast, MB RL builds an internal model of
the environment and plans actions by searching the
potential combinations of future actions and outcomes.
Via changes to the model, it can flexibly adapt to changes
in contingencies and values along the paths of the
internal model. These qualities match the operant
definition of goal-directed control.

Reward prediction errors result in a phasic activation
of dopamine midbrain neurons (Schultz 1997;
D’Ardenne et al. 2008) as well as dopamine-innervated
target areas such as the ventral striatum (vS) and ventro-
medial prefrontal cortex (vmPFC; Daw et al. 2011).
Although these phasic signals conform to exacting detail
with MF theory predictions (for a review, see Huys et al.
2014), the RPE signals in vS also incorporate MB
valuations providing a path by which MB predictions
can be incorporated retrospectively into MF predictions
(Daw et al. 2011; Gershman, Markman & Otto 2014;
Jones, Sadacca & Schoenbaum 2016).

There are suggestions that the balance between
habitual and goal-directed control might be shifted
towards habitual behavior in alcohol-dependent patients.
Sjoerds et al. (2013) used an outcome–devaluation task.
Although there was no behavioral evidence for a shift
(patients just performed worse in all conditions), there
was a suggestive decreased activation in vmPFC and vS
during putatively goal-directed and increased activation
of the putamen during putatively habitual decisions in
the patients. In the Two-Step task, Sebold et al. (2014)
reported an impairment of MB decision-making after
losses in alcohol-dependent patients compared with

healthy control participants. Gillan et al. (2016) also
reported a decrease in MB decision-making to be
associated with alcohol use disorder identification text
scores. However, Voon et al. (2014) found no difference
between detoxified alcohol-dependent patients and
healthy controls. Of note, all of these results test
decision-making without reference to the abused
substance and as such speak to a generalized shift in
decision-making rather than one limited to the setting
of the substance (Everitt & Robbins 2013).

Alterations in patients could either be a consequence
of prolonged alcohol abuse and corresponding neurobio-
logical adaptations (Volkow et al. 2004; Heinz et al.
2009) or reflect a predisposition for aberrant decision-
making preceding the development of hazardous drinking
behavior. Another possible explanation combines both
aspects: Aberrant decision-making may lead to early
and numerous encounters with drugs of abuse, and
their high reward value leads to fast habitization of
drug seeking and consumption including neurobiological
adaptations in cortico-basal ganglia circuits. This
might shift the balance further toward aberrant
decision-making processes (cf. Sjoerds et al. 2013;
Story et al. 2014).

We aimed to investigate the association of MB and MF
decision-making with alcohol consumption before
prolonged alcohol misuse could have led to severe neuro-
biological adaptations. Therefore, we sampled 18-year-
old social drinkers, assessed their alcohol consumption,
and had them perform the Two-Step task. We hypothe-
sized that a shift towards MF habitual and away from
MB goal-directed behavior and neural correlates thereof
would be associated with greater alcohol consumption.
In particular, we tested whether participants with (1)
stronger MF or (2) weaker MB control during Two-Step
and (3) stronger MF RPE-related blood-oxygen level-
dependent (BOLD) signals of vS and vmPFC or (4) weaker
MB signatures there are associated with (1) greater
alcohol consumption in general and, specifically; with
(2) earlier onset of drinking; (3) higher average alcohol
intake; (4) the presence of binge drinking and more
frequent and heavy binge-drinking events; (5) higher
scores on drinking-related questionnaires; and (6)
elevated levels of blood markers for liver function and
alcohol consumption.

MATERIALS AND METHODS

Participants and procedure

Two hundred one 18 year-old male social drinkers
completed the first assessment of a longitudinal
functional magnetic resonance imaging (fMRI) study
(ClinicalTrials.gov identifier: NCT01744834). They were
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randomly sampled from the population of 18 year-old
men of two German cities (Berlin and Dresden) by the
respective local registration office. Subjects who
responded to the invitation letter were screened via
telephone. Exclusion criteria were a history of or current
neurological or mental disorders (except for nicotine
dependence and alcohol abuse), left-handedness, and
contra-indications for MRI. Participants had to have
normal or corrected-to-normal vision. Women were not
included because they show decreased rates of risky
alcohol consumption compared with men (Kraus & Pabst
2008). An additional inclusion criterion was for partici-
pants to have had at least two drinking occasions in the
past 3 months.

Participants came in twice. At the first appointment,
they gave written informed consent and were interviewed
using the Composite International Diagnostic Interview
(CIDI; Jacobi et al. 2013; Pfister & Wittchen 1997) to
assess mental disorders according to the German version
of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV-TR; Saß et al. 2003). Further,
participants completed several questionnaires. They
returned for the second appointment approximately
9 days later (SD = 16 days) to complete the Two-Step
task (Daw et al. 2011) during fMRI. Blood samples for
analysis of alanine transaminase (ALT), aspartate
transaminase (AST), gamma-glutamyl transferase
(γ-GT) and phosphatidylethanol (PEth) were drawn on
the first (Berlin) or second (Dresden) appointment. This
study was approved by local ethics committees of
Technische Universität Dresden and Charité
Universitätsmediz in Berlin.

Behavioral analyses are based on 188 subjects.
Participants were excluded because of CIDI diagnosis of
alcohol dependence (n = 1), alcohol abstinence in the
past year though stated otherwise during telephone
screening (n = 2), positive drug screening on the day of
the fMRI assessment (n = 7), and missing Two-Step data
due to technical issues (n = 3). Effect size estimates of
previous studies regarding model-free/-based control
and alcohol range from |d| = .06 (Voon et al. 2014) over
|d| = .12 (Gillan et al. 2016) to |d| = .53 (Sebold et al.
2014) for which we would have a power to identify an
association of (1 � β) = .07 , (1 � β) = .12, and
(1 � β) = .94, respectively (with n = 188 and α = .05).
To check whether exclusion criteria influenced results,
all behavioral analyses were repeated with all available
data (n = 198).

Measures of goal-directed and habitual behavioral
control

The Two-Step task consisted of 201 trials; each of which
was composed of two subsequent binary choices (Fig. 1).

First-stage stimuli were always the same two gray boxes.
Choice of one of them led with a probability of 70 percent
(common transition) to one colored pair of second-stage
stimuli and with 30 percent (rare transition) to the other
(vice versa for the alternative first-stage stimulus).
Participants were informed about the transition structure
and that transition probabilities stay fixed during the
experiment. Each second-stage stimulus led to reward
(20 Cent) with a probability between 25 percent and
75 percent, which was slowly changing during the
course of the experiment according to Gaussian random
walks [the exact same random walks as in the original
publication by Daw et al. (2011), were used]. With this
setup, participants had to constantly update the utilities
of the second-stage stimuli. Updating the values of
second-stage stimuli relies on MF learning as there is no

Figure 1 Upper panel: Temporal sequence of one trial of the
Two-Step task starting with presentation of the two gray first-stage
stimuli followed by a response phase of maximum 2 seconds. Then sec-
ond-stage stimuli were presented (either green or yellow pair), followed
by another response phase, outcome presentation and finally an inter-
trial interval with an exponentially distributed jitter of 1–7 seconds.
Lower panel: Schematic view of the design of the Two-Step task
displaying the choices on the first stage (gray stimuli) and second stage
(green and yellow stimuli); displayed below the second-stage stimuli
are the corresponding winning probabilities of each second-stage
stimulus and their change during the course of the 201 trials of the
experiment

Alcohol use and learning 381

© 2017 Society for the Study of Addiction Addiction Biology, 23, 379–393



further transition to another state. Therefore, MB and MF
control had the same second-stage values but produced
different values at the first stage. Choices at the first stage
were modeled as a mixture of MF and MB control: MF
control increased the probability of repeating a choice at
the first stage after being rewarded at the second stage
regardless of the transition type of the respective trial;
MB control computes action values by weighting the
values of possible future states with the probability to
reach this state. Hence, MB control is sensitive to which
transition had occurred. Participants were paid out the
collected rewards of a randomly chosen third of all trials
and were told so before the experiment.

Choice data were analyzed using hierarchical logistic
mixed-effects regression implemented in the lme4
package (version 1.1–10; Bates et al. 2015) in R (version
3.2.2; R Development Core Team, 2008). Repetition of
first-level choice was predicted by previous trial’s
outcome (rewarded versus unrewarded) and transition
probability (common versus rare). Both factors and their
interaction were taken as random effects across subjects.
A significant main effect of outcome indicated a MF
strategy, whereas a significant interaction of outcome
and transition probability indicated MB control (Daw
et al. 2011). To test for associations with alcohol
consumption, we included measures of drinking behavior
as additional between-subject factors in the regression
analysis. In addition, scores for MF (MFscore) and MB
control (MBscore) were derived from the individual
probabilities to repeat first-stage choice (stay probabili-
ties). These scores are calculated according to the
respective assumed choice pattern in MF and MB control
[(MFscore = P(stay|rewarded common)+P(stay|rewarded
rare) � P(stay|unrewarded common) � P(stay|unre-
warded rare); MBscore = P(stay|rewarded com-
mon) � P(stay|rewarded rare) � P(stay|unrewarded
common) + P(stay|unrewarded rare); Sebold et al. 2014].
Furthermore, choice data were fitted by the
computational model introduced by Daw et al. (2011),
which assumes a hybrid controller using goal-directed
and habitual choice strategies. In the model, goal-directed
choices were accounted for by MB RL, assuming correct
weighting of expected outcomes with expected transition
probabilities. The habitual learning system was
implemented as MF state-action-reward-state-action (λ)
temporal-difference learning (Niranjan & Rummery
1994). Both systems were assumed to contribute to
behavioral choice according to the relative weight
parameter ω, which varies between fully MF (ω = 0) and
fully MB (ω = 1) choice [see Supporting Information
(SM1.1) for details]. There were six further parameters
of choice behavior modeled, but due to our specific focus
on goal-directed and habitual control, we did not analyze
these here. We applied a logistic transformation to ω

(creating ωlog) to adhere to normal distribution assump-
tions during model fitting and parametric statistical
testing. Individual estimates of ωlog were used as indicator
for the balance of MF and MB control in addition to
MFscore and MBscore. Model comparisons replicated the
superiority of a hybrid controller over pure MF and pure
MB strategies for the whole sample. Individually, 74
percent (n = 139) subjects showed model fits better
than chance.

Measures of alcohol consumption

To characterize participants’ drinking behavior, we used
information acquired with the CIDI (Pfister & Wittchen
1997; Jacobi et al. 2013): age of first drink (i.e. drinking
a whole alcoholic beverage), age of first time being drunk,
estimated average alcohol consumption in the past year
(g alc/day), average alcohol consumption per drinking
occasion in the past year (g alc), age of first binge-
drinking event, number of binge-drinking events lifetime
and average alcohol consumption per binge-drinking
event in the past year (g alc). Binge drinking was defined
as the consumption of at least five drinks (≥60 g alc) on
one occasion. To increase reliability of the single CIDI
items as indicators of alcohol drinking behavior and to
account for their high intercorrelations (Table 1), we
calculated a sum score (Drinkscore) from the z-scaled CIDI
items with higher values indicating greater alcohol
consumption (see SM1.2 for details). Seventy-four
percent of the sample (n = 139) reported at least one
lifetime binge-drinking event. Binge drinkers and non-
bingers can be seen as two meaningful subgroups within
our sample of social drinkers systematically differing in
their alcohol consumption (S5) and were, therefore,
compared regarding measures of goal-directed and
habitual control.

Additionally, we used blood markers for alcohol intake
and liver function (AST, ALT, γ-GT and PEth) and several
questionnaires to characterize drinking behavior: the
Alcohol Dependence Scale (ADS; Horn et al. 1984),
Obsessive Compulsive Drinking Scale (OCDS-G;
Ackermann & Mann 2000), and adapted forms of the
Family Tree Questionnaire (Mann et al. 1985) and the
alcohol-related section of the Family History Assessment
Module (Rice et al. 1995). Using Family Tree Question-
naire and Family History Assessment Module, partici-
pants were classified as family history positive if they
had at least one first-degree alcohol-dependent relative
fulfilling three or more lifetime DSM-IV-TR criteria or
had any treatment of alcohol dependence: 3.7 percent
of our sample were considered family-history positive.
Because of this small proportion, family history was not
included in our analyses. Drinkscore correlated highly sig-
nificant with each other measure of alcohol consumption
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(Bonferroni corrected for multiple comparisons (105
tests), all ps < .0005) except for the blood markers AST,
ALT, γ-GT and PEth (all ps > .045; Table 1).

Behavioral statistical analyses

To examine associations between the multiple measures
of goal-directed and habitual behavioral control (ωlog,
MFscore and MBscore) and of alcohol consumption (CIDI
measures including Drinkscore, ADS sum score, OCDS-G
sum score and blood markers), we first performed a
multi-variate analysis of variance (MANOVA) with
measures of drinking behavior (Drinkscore, ADS sum
score, OCDS-G sum score and blood markers) as depen-
dent and measures of goal-directed/habitual behavioral
control (ωlog, MFscore and MBscore) as independent
variables. We used MANOVA because our multiple
outcome measures characterizing drinking behavior are
intercorrelated, and by using a multi-variate approach,
we control the familywise error rate. This analysis was
repeated with measures of impulsivity as independent
variables. The sum score of the Barratt Impulsiveness
Scale short form (BIS-15; Kübler, Meule & Vögele 2011)
and the Impulsivity subscale of the Substance Use Risk
Profile Scale (SURPS; Woicik et al. 2009) were also
included in behavioral analyses. Thereby, we tested the
association between measures of alcohol consumption
and measures of impulsivity, which were previously
related to alcohol dependence and onset of consumption
(Stanford et al. 2009; Jurk et al. 2015). Testing the
association of alcohol consumption and impulsivity was
used as demonstration that our analytic approach was
sensitive to detecting associations in our data. In addi-
tion, we selected the best predictors of drinking behavior
(operationalized with Drinkscore) with an elastic net anal-
ysis, performed with the glmnet package (version 2.0–2;
Friedman, Hastie & Tibshirani 2010) implemented in R
[see Supporting Information (SR1.4)]. This type of analy-
sis selects predictors in order to build a regression model
explaining as much variance of the outcome as possible
with the least necessary number of predictors. Measures
of goal-directed/habitual control and impulsivity were
entered as predictors to test whether one construct is
superior to the other in predicting Drinkscore. Next, we
used a correlational approach. Exact Kolmogorov–
Smirnov tests implied violation of the assumption of
normality for most measures of goal-directed/habitual
control and alcohol consumption (Table 2). Therefore,
reported correlation coefficients are Spearman’s ρ, which
was shown to have smaller alpha error rate and higher
power than Pearson’s r in case of non-normal variables
and large sample sizes (Bishara & Hittner 2012). Last,
we compared binge drinkers and non-bingers and the
four-risk groups regarding WHO criteria of alcohol

consumption (WHO 2000) in regard to their measures
of goal-directed/habitual behavioral control. In response
to comments of the reviewers, we additionally examined
whether high self-reported impulsivity was associated with
increased habitual or decreased goal-directed behavioral
control and neural correlates thereof as reported recently
(Deserno et al. 2015). Thus, we correlated self-report
measures of impulsivity (BIS-15) with measures of
habitual/goal-directed control and neural correlates
thereof.

All analyses regarding data distribution, correlations
and MANOVAs were performed with SPSS 23.0 (2015,
IBM SPSS Statistics for Windows: IBM Corp., Armonk,
NY, USA).

Functional magnetic resonance imaging data acquisition
and analysis

Imaging data were obtained using three-Tesla whole-
body MRI scanners (Magnetom Trio, Siemens, Erlangen,
Germany) equipped with a 12-channel head coil located
at the Neuroimaging Center, Technische Universität
Dresden, and the Charité Universitätsmedizin Berlin. For
fMRI, a standard T2*-weighted echo-planar imaging
(EPI) sequence (TR = 2410 ms; TE = 25 ms; flip angle:
80°; voxel size: 3 × 3 × 2 mm (1 mm gap); FOV:
192 × 192 mm; in-plane resolution: 64 × 64 pixels)
was obtained comprising 42 transversal slices in descend-
ing order, orientated approximately 25° to the anterior
commissure–posterior commissure line. Moreover, a
structural T1-weighted magnetization-prepared rapid
gradient echo (MPRAGE) image was obtained
(TR = 1900 ms, TE = 2.26 ms, flip angle: 9°, voxel size:
1 × 1 × 1 mm, FOV: 256 × 256 mm).

Functional magnetic resonance imaging preprocess-
ing and data analyses were performed with Statistical
Parametric Mapping software (SPM8; London, UK:
Wellcome Department for Imaging Neuroscience)
implemented in Nipype Version 0.9.2 (Gorgolewski et al.
2011) and Matlab R2014a (2014. Natick, MA: The
MathWorks Inc.). Preprocessing included correction for
differences in slice acquisition times with reference to
the middle slice, motion correction via realignment of
each slice to the first, correction for field inhomogeneities
with a voxel displacement map computed from acquired
field maps, coregistration of the mean EPI image to the
individual MPRAGE image, segmentation and normaliza-
tion of the individual MPRAGE image to Montreal Neuro-
logical Institute space and applying these normalization
parameters to the distortion-corrected EPI images, simul-
taneously resampling EPI images to 2 × 2 × 2 mm, and
spatially smoothing the EPI images with a Gaussian ker-
nel of 8 mm full-width-half-maximum. During first-level
analyses, a high-pass filter of 128 s width was applied.
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Model-based fMRI analyses are based on 146 subjects.
Neuroradiologists screened each T1-weighted MPRAGE
image for anatomical findings leading to exclusion of five
participants. Additionally, participants were excluded
because of missing field maps (n = 3), ghost artifacts in
EPI after preprocessing (n = 4), non-remediable failure
of coregistration (n = 2) or normalization (n = 7) and
extensive motion during fMRI (n = 21; >3 mm
translation or 3° rotation volume-to-volume) resulting
in a sample size of n = 146 for fMRI analyses. We
computed RPEs for each participant. RPEs are non-zero
at the onsets of second-stage and outcome presentation
(Daw et al. 2011). Therefore, we modeled BOLD signals
at these timepoints by two parametric modulators
obtained from the computational model. MF RPE (RPEMF)
and MB RPE time series were derived for both timepoints
under the assumption of fully MF (ω = 0) and fully MB
(ω = 1) control, respectively. To capture unique trial-
variance in RPEs associated with the MB but not the

MF system, we used the difference between MF and MB
RPEs (RPEΔMB) as regressor. At the second stage, there
is no further transition to another stage, and MB learning
reduces to pure MF learning. That is why RPEΔMB is zero
at outcome presentation. We set up individual fMRI
statistics according to Daw et al. (2011; see SSM2.1 for
details). For repetition of their analyses, we validated
the task setup with region of interest (ROI) analyses in
anatomically defined masks of bilateral vS and vmPFC
(SM2.2 and Fig. S2); reported activations were deemed
significant at PFWE < .05 for the peak voxel. To test our
hypotheses that neural correlates of MF and MB control
are associated with alcohol consumption, mean activa-
tion in the same ROIs were correlated with measures of
drinking behavior (trading-off spatial resolution to reduce
the number of tests performed). Additionally, exploratory
whole-brain analyses were performed to test for associa-
tions outside the a priori defined ROIs. For these analyses,
statistical thresholds were set to Puncorr. < .001, k ≥ 50,

Table 2 Demographic information, descriptive statistics of measures of goal-directed/habitual control and alcohol consumption of
participants included in analyses (n = 188; see Table S1 for these data of the complete sample).

n Min First quartile Median Third quartile Max

Descriptive statistics of sample
Age 188 18.07 18.24 18.33 18.50 18.93
Years in school 187 4 11 12 12 15

Measures of goal-directed/habitual control
ωa 188 0.00 0.20 0.59 0.80 1.00
MFscore 188 �0.42 �0.04 0.08 0.21 0.85
MBscore 188 �0.34 0.06 0.24 0.49 1.21

Measures of alcohol consumption
CIDI measures

Drinkscore 188 �8.21 �3.54 �0.35 1.61 17.52
Age of first drinka 188 9 14 14 15 18
Age of first time drunka 180 10 15 16 17 18
Estimated alcohol consumption in past year (g/day) a 188 0.00 3.21 6.43 15.43 112.50
Alcohol consumption in past year (g/drinking occasion)a 188 18 45 54 90 342
Age of first binge-drinking episodea 131 14 16 16 17 18
Number of binge-drinking episodes lifetimea 131 1 4 10 20 150
Alcohol consumption per binge-drinking episode (g)a 139 63 90 117 135 450

Questionnaire measures
ADS sum scorea 181 0 2 4 7 30
OCDS-G sum Scorea 183 0 1 3 5 18

Blood markers
AST (μKat/l)a 183 0.17 0.35 0.40 0.48 2.51
ALT (μKat/l)a 182 0.11 0.27 0.35 0.45 1.59
γ-GT (μKat/l)a 183 0.13 0.23 0.27 0.33 0.89
PEtha 158 10 10 60 60 1180

Measures of impulsivity
BIS-15 sum score 185 18 27 30 34 45
SURPS Impulsivitya 186 5 9 10 11 17

aExact Kolmogorov–Smirnov test implied non-normal distribution of this measure (P < .05). Note: n occasionally differs from 188 (or 139 in binge
drinking-relatedmeasures, respectively) due to singlemissing data points. ADS =Alcohol Dependence Scale; ALT = alanine transaminase; AST = aspartate
transaminase; BIS-15 = Barratt Impulsiveness Scale (short form); Drinkscore = score of drinking behavior from CIDI measures of alcohol consumption;
γ-GT = gamma-glutamyl transferase; MBscore = score of model-based control; MFscore = score of model-free control; OCDS-G = Obsessive Compulsive
Drinking Scale; ω = balance between model-free and model-based control; PEth = phosphatidylethanol; SURPS = Substance Use Risk Profile Scale.
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and results were deemed significant with PFWE < .01 on
cluster level. All fMRI analyses included a dichotomous
variable for site of investigation as covariate to control
for possible center effects.

RESULTS

Sample characteristics

The sample consisted of 188 young male adults. Table 2
summarizes the distribution of sociodemographic infor-
mation and relevant measures of goal-directed/habitual
control and alcohol consumption. According to criteria
for risk of alcohol consumption published by the WHO
(World Health Organization 2000) for comparative
research purposes, this sample can be characterized as
follows: regarding average consumption on a single
drinking occasion in the past year, 21.8 percent fall into
the low-risk (1–40 g alc), 31.9 percent in the medium-
risk (41–60 g alc), 30.3 percent in the high-risk
(61–100 g alc) and 16.0 percent in the very-high-risk
category (101 + g alc); regarding average alcohol
consumption per day in the past year, 96.8 percent have
to be characterized as having low-risk (1–40 g alc), 2.1
percent as having medium-risk (41–60 g alc) and 1.1
percent as having high-risk (61 + g alc) alcohol
consumption. Eight participants (4.3 percent) fulfilled
DSM IV-criteria of alcohol abuse: 73.9 percent reported
at least one occasion of binge drinking. Levels of blood
markers were below the cut-off value for pathological
levels in 91.5 percent (AST; cut-off 0.835 μKat/l), 93.1
percent (ALT; cut-off 0.835 μKat/l) and 100 percent
(γ-GT; cut-off 1.002 μKat/l) of the sample. PEth values
were available for 158 participants only, because
collection started 3 months after the start of Two-Step
data collection. Of available PEth data, 31.6 precent were
negative (i.e. <20 ng/ml) suggesting no or very low-
alcohol consumption in the preceding 2 weeks; in 46.8
percent, values were positive but too low to be exactly
measurable (i.e. 20–100 ng/ml) indicating low-alcohol
intake. For these participants, PEth values were set to
10 and 60, respectively. Consequently, PEth was treated
as ordinal data. Thirteen participants (8.2 percent) had
PEth values >210 ng/ml, which was suggested to be
the threshold between moderate drinking and alcohol
misuse (Wurst et al. 2015).

Thirty participants (16 percent) reported to currently
be regular smokers. Exact Mann–Whitney U-test showed
no differences in measures of goal-directed/habitual
control between smokers and non-smokers. Also,
smoking status had no significant effect on the results
of analyzing stay probabilities with the logistic regression.
In addition, we compared participants with an individual
better-than-chance model fit (n = 139) with the non-

fitters regarding the measures of alcohol consumption
with exact Mann–Whitney U-test and found no signifi-
cant differences. Furthermore, there were no significant
correlations between individual log-likelihoods and
measures of alcohol consumption (all Spearman’s
|ρ| < .135, all Ps > .067) except for correlations with
the three blood markers (AST: ρ = .156, P = .035; ALT:
ρ = .174, P = .019; γ-GT: ρ = .168, P = .023).

Behavioral results

First, we analyzed behavioral choice tendencies of
participants to find evidence for MF and MB control.
Therefore, we performed a logistic regression to analyze
how previous trial’s transition type from first to second
stage (common versus rare) and final outcome (reward
versus no reward) affected the probability to repeat the
same choice at first stage in the current trial. Participants
had a higher probability to repeat a first-stage choice after
having been rewarded in the previous trial (significant
main effect of outcome), which indicates MF control
strategies. The probability to repeat a first-stage choice
was also increased after rewarded trials with common
transition and unrewarded trials with rare transition
(significant interaction effect of outcome and transition
type). This interaction effect indicates MB behavioral
control. Additionally, this analysis yielded a significant
main effect of transition with repetition probability being
generally higher after common compared with rare
transition trials (all Ps < .001; see SR1.2 and Fig. 3).

Second, we investigated the relationship between
measures of goal-directed/habitual control and alcohol
consumption. Therefore, we first included Drinkscore as
additional between-subjects factor in the logistic
regression analysis of choice repetition. This yielded no
significant effects of Drinkscore while preserving the
aforementioned main and interaction effects (see
SR1.2). Then, we used MANOVA with measures of
goal-directed/habitual control (ωlog, MFscore and MBscore)
as independent and measures of alcohol consumption
(Drinkscore, ADS sum score, OCDS-G sum score, AST,
ALT, γ-GT and PEth) as dependent variables. MANOVA
is a multi-variate approach bypassing the multiple
comparisons problem we face with our multitude of
dependent and independent variables. This analysis
yielded no significant associations of alcohol consump-
tion measures with ωlog F(7, 142) = 1.685, P = .117,
ηp
2 = .077; MFscore F(7, 142) = .646, P = .717, ηp

2 = .031;
or MB

score
F(7, 142) = 1.491, P = .175, ηp

2 = .068. Next, we
correlated measures of goal-directed/habitual control
(ωlog, MFscore and MBscore) with measures of alcohol
consumption. The associations of main interest between
Drinkscore and each measure of model-free/-based control
did not reach significance (Table 3 and Fig. 2). Besides
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this, these analyses yielded a significant negative associa-
tion of γ-GT with MBscore (Spearman’s ρ = �.160,
P = .031; Table 3). However, this finding did not survive
Bonferroni correction for multiple comparisons (42 tests).
No further correlation on the behavioral level reached
significance (all Ps > .168).

Since binge drinkers and non-bingers can be seen
as meaningful subgroups in this sample showing

numerous differences in drinking behavior (Table S5),
we compared the measures of goal-directed/habitual
control between these groups using Exact Mann–
Whitney U-test. These analyses yielded no significant
differences between binge drinkers and non-bingers
with regard to ω, MFscore or MBscore (all Ps > .125;
Table S5). In addition, we compared measures of goal-
directed/habitual control between the four-risk groups

Table 3 Results of correlations between measures of alcohol consumption and behavioral measures of goal-directed/habitual control,
mean extracted ROI BOLD responses to RPEMF and RPEΔMB and measures of impulsivity.

ω MFscore MBscore RPEMF RPEΔMB BIS-15 SURPS

vS vmPFC vS vmPFC SUM IMP

Drinkscore �.067 .000 �.004 �.019 .014 �.058 �.023 .256*** .246***
Age of first drink �.011 .042 .057 �.184* �.143 �.063 �.008 �.125 �.263***
Age of first time drunk .066 .052 .048 �.044 �.011 �.040 .059 �.182* �.155*
Estimated alcohol consumption
in past year (g/day)

�.070 �.071 .038 �.101 .021 �.105 �.048 .088 .116

Alcohol consumption in past year
(g/drinking occasion)

�.026 �.081 .101 �.087 �.006 �.038 �.018 .133 .081

Age of first binge-drinking episode .098 �.033 .019 .075 .040 .076 .047 �.156 �.126
Number of binge-drinking
episodes lifetime

�.033 .038 .044 .001 .047 �.090 �.035 .232** .179*

Alcohol consumption per
binge-drinking episode (g)

�.064 .096 �.018 �.015 .048 .035 .059 .210** .245***

ADS sum score �.061 .007 .029 .006 .115 �.040 �.099 .211** .298***
OCDS-G sum score .000 �.011 .031 .088 .182* .021 .073 .223** .228**
AST .015 .015 �.047 �.025 .059 �.008 �.042 .039 .165*
ALT �.072 .061 �.080 .003 .029 .010 .030 �.018 .159*
γ-GT �.066 �.011 �.160* �.074 �.089 �.075 �.005 �.205** �.092
PEth .041 �.048 .052 �.091 �.016 �.019 .005 �.150 .005

*P < .05; **P < .01; ***P < .001 (two-tailed). Note: All correlations are Spearman’s ρ. ADS = Alcohol Dependence Scale; ALT = alanine transaminase;
AST = aspartate transaminase; BIS-15 = Barratt Impulsiveness Scale (short form) with SUM, Sum score; Drinkscore = score of drinking behavior from
CIDI measures of alcohol consumption; γ-GT = gamma-glutamyl transferase; MBscore = score of model-based control; MFscore = score of model-free
control; OCDS-G = Obsessive Compulsive Drinking Scale; ω = balance between model-free and model-based control; PEth = phosphatidylethanol;
SURPS = Substance Use Risk Profile Scale with IMP, Impulsivity subscale; vS = ventral striatum; vmPFC = ventromedial prefrontal cortex.

Figure 2 Scatterplots of Drinkscore with the three measures of goal-directed/habitual control: the score for model-free (MFscore) and
model-based (MBscore) choice behavior stay probabilities and the balance parameter from the hybrid-controller computational model (ω). Note
that for displaying purposes and better interpretability, ω is used instead of ωlog, but this does not influence the rank–order correlation
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regarding average consumption on a single drinking
occasion in the past year (WHO 2000). Adding WHO risk
group as a fixed between-subjects factor in the logistic
regression of stay probabilities did not yield any
significant effect of WHO risk group while preserving
aforementioned main and interaction effects. Non-
parametric Kruskal–Wallis test showed no differences
between the WHO risk groups in ω, MFscore or MBscore
(all χ2(3) < 2.584, Ps > .460).

In contrast to MF an MB control, measures of
impulsivity (BIS-15 sum score and SURPS impulsivity
subscale) showed the anticipated associations with
drinking behavior. Correlational analyses yielded several
significant results indicating that earlier and heavier
alcohol consumption is associated with higher scores of
impulsivity (Table 3). To directly compare the associa-
tions of measures of goal-directed/habitual control and
impulsivity with measures of drinking behavior, we set
up a MANOVA including both groups of predictors. This
analysis corroborated previous results by revealing signif-
icant associations with measures of impulsivity but not
goal-directed/habitual control [ωlog: F(7, 139) = 1.954,
P = .066, ηp

2 = .090; MFscore: F(7, 139) = .779, P = .606,
ηp
2 = .038; MBscore: F(7, 139) = 1.365, P = .225, ηp

2 = .064;
BIS-15 sum score: F

(7, 139)
= 2.660, P = .013, ηp

2 = .118,
SURPS impulsivity subscale: F(7, 139) = 2.518, P = .018,
ηp
2 = .113]. We then used an elastic net analysis
(Friedman et al. 2010) to select the best predictors of
Drinkscore among the measures of goal-directed/habitual

control and impulsivity thereby directly comparing
their respective relation to participants’ drinking
behavior. This analysis corroborated the findings insofar
as no measure of goal-directed/habitual control was
selected as predictor, but both measures of impulsivity
were (see SR1.4).

All behavioral analyses were repeated with all
available data (n = 198) to check whether exclusion
criteria influenced the results. Participants, which had
previously been excluded had higher Drinkscore, ADS
sum score, and OCDS-G sum score and reported lower
age of first drink, first time drunk and higher average
alcohol consumption (exact Mann–Whitney U-test, all
Ps < .019). Nevertheless, results did not change with
inclusion of these subjects.

Functional magnetic resonance imaging results

With fMRI data, we first tested the main effects of
interest, namely, BOLD correlates of RPEMF and RPEΔMB.
Separate one-sample t-test of fMRI contrasts for RPEMF,
and RPEΔMB were performed as ROI as well as exploratory
whole-brain analyses. In addition, we tested the
conjunction null hypothesis (Nichols et al. 2005) of
RPEMF and RPEΔMB being correlated with the BOLD
responses in the same regions. BOLD responses in vS
and vmPFC were associated with RPEMF as well as
RPEΔMB at PFWE < .05 (Fig. 3 and Table S7–9). This
replicates the finding of the original study that there are

Figure 3 Upper panel: Stay probabilities in hypothetical cases of pure (a) model-free and (b) model-based control. (c) Observed stay
probabilities in our sample resemble a mixture of model-free and model-based behavioral control with a tendency towards model-based
control. Error bars indicate SEM. Lower panel: Striatal BOLD correlates of (d) RPEMF and (e) RPEΔMB and (f) their conjunction. Displayed at
PFWE < .05; 4.64 < T < 12.5; whole brain analyses
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signatures of MB evaluation in the ventral striatal BOLD
response to RPEs, the ‘signal most associated with model
free RL’ (Daw et al. 2011, p. 1210).

Finally, we tested whether alcohol consumption is
associated with neural representations of RPEMF and
RPEΔMB. We first correlated measures of alcohol
consumption with extracted mean activation in vS and
vmPFC ROIs. This analysis revealed significant associa-
tions of BOLD responses to RPEMF in vS with age of first
drink (ρ = �.184, P = .026) and in vmPFC with OCDS-
G sum score (ρ = .182, P = .031; Table 3). Similar to
the significant correlation of γ-GT and MBscore on the
behavioral level, these correlations did not survive
Bonferroni correction for multiple comparisons (28 tests).
A MANOVA with measures of drinking behavior as
dependent and mean extracted ROI activation as
independent variables yielded no significant results (all
Fs(7,108) < .865, all Ps > .537, all ηp

2s < .053). Next,
exploratory whole-brain regression analyses were
performed by testing the relationships of RPEMF and
RPEΔMB with drinking measures. A negative association
between BOLD responses to RPEMF and age of first drink
was revealed in a cluster in left putamen, pallidum and
insula (t(1,143) = 4.017, k = 608; Fig. 4 and Table S10),
which corresponds to r = .319 in the peak voxel of this
cluster. This cluster also involves voxels, which are
included in our mask of vS explaining the significant
correlation of BOLD responses to RPEMF in vS with age
of first drink. No further measure of alcohol consumption
showed an association with BOLD responses to RPEMF or
RPEΔMB.

Next, we compared neural representations of RPEMF

and RPEΔMB between binge drinkers and non-bingers.
Exact Mann–Whitney U-test comparing extracted mean
ROI activations in RPEMF and RPEΔMB contrasts in vS
and vmPFC yielded no significant differences between
binge drinkers and non-bingers (all Ps> .414; Table S11).
Additionally, no significant differences were observed in
exploratory whole-brain two-sample t-test comparing

BOLD responses to RPEMF and RPEΔMB, respectively,
between binge drinkers and non-bingers.

In addition, we examined the relation between mea-
sures of impulsivity and goal-directed/habitual control.
There has been evidence that high-impulsive subjects
have a ‘subtle accentuation of model-free control’ on a
behavioral level and reduced lateral pre-/orbitofrontal
MB signals during Two-Step (Deserno et al. 2015, p. 5).
In our sample, we found no significant associations
between BIS-15 subscales or Sum score with λ, ω, MFscore,
MBscore, as well as neural correlates of MF and MB
control in vS and vmPFC ROIs (see Table S6 for results
of correlations) or 10 mm-spheres around the three
peaks in lateral pre-/orbitofrontal cortex reported in
Deserno et al. (2015).

DISCUSSION

We investigated the association between goal-directed
and habitual behavioral control during an RL task and
alcohol consumption in healthy social-drinking young
adults. The overall finding of our study is that there were
no significant associations of measures of goal-directed or
habitual control and alcohol consumption. On the
behavioral level, there were no significant associations
between stronger habitual or weaker goal-directed
control with (1) greater alcohol consumption in general;
(2) earlier onset of drinking; (3) higher average alcohol
intake; (4) the presence of binge drinking and more
frequent and heavy binge-drinking events; (5) higher
scores on drinking-related questionnaires; or (6) elevated
levels of blood markers for liver function and alcohol
consumption, except for a small correlation between
MB behavior and γ-GT. On the neural level, stronger
representation of MF RPE in vS and vmPFC and weaker
MB signatures in these representations were also not
significantly associated with measures of alcohol
consumption. However, both ROI and exploratory
whole-brain analyses revealed that participants, who

Figure 4 Negative association between BOLD response to RPEMF and age of first drink. Displayed at puncorr. < .001; 3.15 < T < 5;
whole brain analyses
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reported earlier onset of drinking, showed a stronger
correspondence between BOLD signals in the putamen
and RPEMF.

We found that on a behavioral level greater alcohol
consumption at age 18 was not associated with stronger
MF habitual or weaker MB goal-directed behavior. This
suggests that favoring habitual over goal-directed control
during decision-making might not be a predisposing
vulnerability factor for alcohol consumption per se.
However, generalization is limited because we deliber-
ately excluded subjects with rare drinking patterns
among young men, namely, complete alcohol abstinence
or early alcohol dependence. We did this in order to avoid
ceiling and floor effects in alcohol consumption over time,
to increase the variety of possible drinking trajectories
during the follow-up interval and to not include
participants who already had severe neuroadaptations
due to pathological alcohol intake. Therefore, although
this sample is appropriate to investigate drinking
trajectories longitudinally, variance in alcohol consump-
tion at the cross-sectional level is limited by design. This
might have contributed to the lack of associations
reported here. Repeating the behavioral analyses with
the subjects excluded due to positive drug screenings or
extreme alcohol consumption patterns increased
variance in alcohol consumption but failed to alter the
results. Furthermore, despite the limited variance in
drinking behavior, we did find a robust association of
alcohol consumption with impulsivity. Impulsivity has
often been associated with substance abuse and is
thought to increase liability for addiction (Redish et al.
2008; Dalley, Everitt & Robbins 2011). It, therefore,
seems unlikely that the current null results with respect
to learning variables are due to a lack of variance in
alcohol consumption. It certainly suggests that the
relation between alcohol consumption and the degree of
goal-directed/habitual behavioral control is negligible in
comparison to the relation with impulsivity.

Another group has recently also investigated the
association between goal-directed/habitual control and
alcohol consumption. Investigating a large sample of
1413 participants with an internet-based on-line version
of the Two-Step task, Gillan et al. (2016) reported a
negative association between Alcohol Use Disorders
Identification Test scores and MB control. At first glance,
our null finding in this regard seems to be in contrast to
their result, but the association found in their sample
was rather small; and the sample size in our study is
too low to detect associations of this magnitude: So the
results of Gillan et al. (2016; |d|=.12) and our study
point to a weak association. Howsoever, web-based
assessments seem to be a valuable approach to reach
more participants and should be used in future studies
to complement face-to-face assessments.

Two further studies used the Two-Step task in
cohorts of alcohol-dependent patients after cessation of
alcohol use and control groups. One of them found a
significantly lower magnitude of MB control in patients
compared with control participants (Sebold et al.
2014), while the other did not (Voon et al. 2014). This
discrepancy can partly be resolved: first, the difference
between alcohol-dependent patients and control partici-
pants in Sebold et al. (2014) was not significant when
controlling for processing speed, in which these groups
differed significantly. Second, alcohol-dependent patients
in the study of Sebold et al. (2014) were abstinent for
about 2 weeks, while patients in Voon et al. (2014) were
abstinent from alcohol for 2 weeks to 1 year and
revealed a correlation of longer duration of abstinence
with more MB control. Taken together, an imbalance
in goal-directed/habitual control does not seem to
increase liability for alcohol dependence substantially. If
goal-directed control as measured with the Two-Step
task is indeed reduced in alcohol-dependent subjects,
this might rather emerge during the course of
prolonged, excessive alcohol use and, like other cognitive
alterations, might be reversible after cessation of alcohol
consumption.

As a side issue, we examined the relation between
impulsivity and behavioral control during the Two-Step
task and found no evidence of a behavioral or neural
association. Both impulsivity and the balance between
goal-directed and habitual control have been proposed
as possible vulnerability factors for addiction (Redish
et al. 2008) and were hypothesized to interact (Story
et al. 2014; Deserno et al. 2015). Nevertheless, our data
do not support this hypothesis. However, rejecting this
hypothesis in general on the basis of our results would
be premature. Impulsivity is a broad, multi-facetted
construct, and research on finer levels of abstraction is
warranted to investigate this issue further. Possibly, high
motor impulsivity might lead to often favoring fast
habit-like actions over slowly forward-planned actions,
or high delay discounting might lead to more frequent
choices of temporally proximal rewards leading to faster
habitization of actions due to more frequent reinforce-
ments (Story et al. 2014).

The association of the neural representation of MF
RPEs with onset of drinking was predominantly localized
in the posterior putamen, an area previously related to
the representation of values learned by MF RL (Dayan,
Dolan & Wunderlich 2012; Lee, O’Doherty & Shimojo
2014), habit learning, and control of habitual behavior
in healthy (Balleine, O’Doherty & Tricomi 2009) and
alcohol-dependent subjects (Sjoerds et al. 2013). The
putamen receives extensive input from the dopaminergic
midbrain nuclei (Haber & Knutson 2010), whose output
(Schultz 1997) and BOLD response (D’Ardenne et al.
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2013) have been shown to represent RPEs and be causal
for learning (Steinberg et al. 2013). However, this
enhanced representation of MF error signals did not
translate into stronger MF habitual behavioral control
during the Two-Step task. This might indicate a
compensatory mechanism by which subjects with early
onset achieve the same balance between MF and MB
control despite stronger neural representation of MF
values. This could work via downregulation of
functional connectivity between posterior putamen
and vmPFC, where MF and MB values are thought to
be integrated (Lee et al. 2014). Alternatively, a change
of the neural representation of MF values might
precede a measurable change of MF behavioral control.
The longitudinal design of this study will address this
question. In addition, this finding will have to be
replicated in future studies—just like the association
of OCDS-G scores with the mean BOLD response to
RPEMF in vmPFC—to decrease the risk of interpreting
a false-positive finding.

Interestingly, acute alcohol administration has been
shown to reduce goal-directed control in a devaluation
task (Hogarth et al. 2012). This could lead to habitual
control taking over in acute alcohol intoxication and,
thereby, increase the probability of choosing previously
rewarded actions such as consuming even more alcohol.
This provides a possible explanation for out-of-control
binge drinking. Hence, in terms of searching for predic-
tors of alcohol consumption at this age, individual
volatility or state dependence of the balance between
both control systems under acute alcohol may yield
better predictive properties for drinking patterns.

There are limitations of this study: First, because of
our exclusion criteria, this sample is not representative
for the whole population of young adults. This reduces
generalizability of our results. Second, we examined
participants after they started drinking alcohol rather
than before. Both factors preclude us from conclusively
ruling out aberrant decision-making as a predisposing
risk factor of hazardous alcohol use, although our
results strongly suggest that any present association
might be negligible.

In summary, we investigated the relationship of
goal-directed and habitual control and alcohol drinking
behavior in young adult social drinkers. Results did not
confirm our hypothesis that an imbalance between
goal-directed and habitual control favoring habitual
behavior was associated with greater alcohol consump-
tion on a cross-sectional level. These results favor the
view that a transition from goal-directed to habitual
control as proposed by theoretical work (Everitt &
Robbins 2013) occurs during later steps on the path to
an alcohol use disorder rather than being a trait marker
for alcohol use per se.
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