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ABSTRACT

Psychological therapies are among the most effective treatments for a range of common mental
health problems – however, we still know relatively little about how exactly they improve symp-
toms. Here, we demonstrate the power of combing theory with computational methods to parse
effects of different components of cognitive-behavioural therapies on to underlying mechanisms.
Specifically, we present data from a series of randomized-controlled experiments testing the ef-
fects of components of behavioural and cognitive therapies on different cognitive processes, us-
ing well-validated behavioural measures and associated computational models (total N=807).
We found that a goal-setting intervention, based on behavioural activation therapy, reliably and
selectively reduced sensitivity to effort when deciding how to act to gain reward. By contrast,
we found that a cognitive restructuring intervention, based on cognitive therapy, reliably and
selectively reduced the tendency to attribute negative everyday events to self-related causes.
Importantly, the effects of each intervention were specific to these respective measures. Our
approach provides a basis for understanding how different elements of common psychotherapy
programs work, which may enable theoretically-informed treatment targeting in the future.
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INTRODUCTION

There is compelling evidence that psychotherapy programs as a whole are effective treatments
for common mental health problems (Cuijpers et al., 2016, 2018; van Dis et al., 2020) (Fig-
ure 1a). However, psychotherapy programs are complex, multi-component interventions, and
we still lack an understanding of how different components of these programs work (Kazdin,
2009; Holmes et al., 2014; Kazdin and Blase, 2011) (Figure 1b). Such insight is vital, as under-
standing the mechanisms underlying treatment response is one of the most promising routes to
achieving many of the goals of mental health research – including increasing efficacy, engage-
ment, and, ideally, theoretically-information treatment personalization (Huibers et al., 2021).
Here, we argue that developments in the cognitive sciences concerning how to use robustly-
designed behavioural tasks, in combination with rigorous modelling procedures that generate
precise and reliable measures of cognitive processes, can accelerate progress towards these goals
(Reiter et al., 2021; Huys et al., 2022).

In line with recent calls to the research community (Holmes et al., 2018; Wellcome, 2021), we
take the pragmatic approach of starting from psychological therapies supported by a strong evi-
dence base, and working back to theories regarding the mechanisms by which they work. Whilst
cognitive and behavioural therapies are often administered together as part of the same treat-
ment program (e.g., Clark 2018), they differ in underlying theory – for example, the primacy of
behavioural vs cognitive changes in fostering improved mood (Beck et al., 1987; Martell et al.,
2013). This distinction offers an opportunity to test whether these two types of interventions
may work via different mechanisms – and whether there is specificity in their action via these
proposed mechanisms.

Here, we present data from a series of studies investigating the mechanisms by which spe-
cific components of behavioural and cognitive therapies are proposed to work. We focus on
a remote (online) setting, given the relative ease of delivering content in a standardized way,
and the likely utility of a modular approach to treatment personalization for digitally-delivered
therapies (see General Discussion). The first set of studies consisted of developing robust assess-
ments of cognitive processes thought to be targeted by different components of cognitive and
behavioural therapies (Figure 1c). Each assessment combined an optimized behavioural task
with a theoretically-informed computational model, affording precise and reliable measurement
of multiple different cognitive mechanisms (Figure 1d). Specifically, one set of measures was
designed to probe constructs relevant to the goal-setting component of behavioural activation
(“how to decide when rewards are worth exerting effort for”), and the other constructs relevant to
the cognitive restructuring component of cognitive therapy (“how to reason about likely causes of
things that happen to us”). In a second group of studies, we examined the extent to which these
measures were sensitive to interventions based on each therapy component (Figure 1e). In a
third study, we examined whether changes in cognitive mechanisms identified in the previous
studies were specific to that particular intervention type (Figure 1f). Finally, we used data from
studies two and three to explore to what extent individual differences in symptom profiles may
relate to the magnitude of effects of each intervention on underlying cognitive mechanisms.

The overarching aim of this work is to demonstrate how creating reliable and acceptable mea-
sures of cognitive processes, drawn from relevant psychological theory, can identify mechanisms
underlying psychological interventions. We believe our findings provide an important founda-
tion towards establishing how real-world psychotherapy treatments may work, and who they
are most likely to work for.

PREPRINT 2



Figure 1: The use of precise and reliable cognitive measures from computational cognitive
science may help shed light on mechanisms targeted by components of common psycho-
logical therapies. a At present, the majority of our causal knowledge regarding psychotherapy
outcomes is at the level of how different treatment packages or programs affect symptom levels.
cx, different components of a given psychological treatment (e.g., behavioural or cognitive ther-
apies; orange and blue colours), which may be further combined into psychotherapy treatment
programs (e.g., cognitive-behavioural therapy, or CBT); s, symptoms; solid arrows, population-
level evidence of causal influence. b Ideally, this knowledge can be further decomposed into a
description of how different treatment components (cx) affect symptoms via specific underlying
mechanisms (mx). Importantly, if different treatments work by at least partially distinct mecha-
nisms, which can measure in a reliable way in a given individual, then this would yield an oppor-
tunity to develop personalized treatment packages. dotted arrows, effects not predicted under a
specific mechanism model. c Potential mechanisms by which different components of psycho-
logical therapies improve symptoms may be drawn from underlying psychological theory. Here,
we test whether psychological interventions based on components of behavioural and cognitive
therapies are observed to influence different potential underlying cognitive mechanisms (solid
lines), and whether these effects are specific to these mechanisms (dotted lines). d To gener-
ate precise and reliable estimates of potential cognitive mechanisms, task design and associated
analysis methods first underwent several cycles of design optimization. This process included
rigorous simulation-based calibration (SBC) analysis of model-based inference procedures and
assessment of observed test-retest reliability of model-based measures. Key optimization targets
alongside these measurement properties were task brevity and user-acceptability. Continued on
the next page
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Figure 1: Specifically, we developed a gamified reward-effort decision-making paradigm (task1)
that yields robust measurement of reward and effort sensitivity when deciding whether specific
actions are worth taking, and a causal attribution task (task2) that measures latent tendency to
attribute positive and negative everyday events to internal (vs external) and global (vs specific)
causes. e Next, we tested whether each of these sets of measures were sensitive to interventions
based on relevant therapy components in a series of randomized, controlled experiments (i.e.,
the effects of a goal-setting intervention on reward/effort sensitivity, and the effects of a re-
structuring intervention on causal inference). f Finally, we used a cross-over design (where task
and intervention conditions were independently randomly allocated) to test whether effects of
interventions were specific to their proposed cognitive substrates. NB Arrows in panels d, e, f,
represent experiment flow (over time, t), rather than causal influence.

RESULTS

DEVELOPING USEFUL MEASURES FOR PSYCHOTHERAPY PROCESS RESEARCH

Several considerations that motivated and guided our approach are worth outlining up-front.
Firstly, in order to ensure reliable measurement of relevant cognitive mechanisms, each set of
tasks and measures went through extensive rounds of design and analytic optimization prior to
proceeding with the main studies (Figure 1d). To derive our computational measures, we used
an analytical approach (Hierarchical Bayesian analysis; Gelman et al. 1995; Griffiths et al. 2008)
previously shown to substantially increase the reliability of individual-level parameter estimates,
by allowing information to be shared between relevant levels of analysis, and better accounting
for measurement error (Katahira, 2016; Rouder and Haaf, 2019; Haines et al., 2020b; Brown
et al., 2020). Secondly, for each prospective task design, rigorous testing of inference (model-
fitting) procedures was carried out via simulation-based calibration (SBC; Talts et al. 2020),
a general method for validating generative Bayesian algorithms using simulated datasets and
posterior inference (Schad et al., 2021) (Methods, Figure S1). Following this analysis, the
observed test-retest reliability of parameter estimates from the chosen design was explicitly
assessed in our target population (Figure 2a,b).

Equally important as the above analytic considerations, useful individual difference measures
should evoke robust differences between participants (Hedge et al., 2020; Zorowitz and Niv,
2023), and be acceptable (ideally engaging!) to their end users (Graham et al., 2019). Initial
task development therefore proceeded via multiple informal cycles of ‘user-in-the-loop’ design
optimization. Specifically, in order to maximise the magnitude of observable individual differ-
ences, care was taken to minimise range restriction (floor/ceiling) effects (Hedge et al., 2020;
Zorowitz and Niv, 2023). In light of qualitative feedback from our participants and previous
mental health studies using online tasks (Lee et al., 2023), major design optimization targets
were task brevity (minimum trials to reliably detect target parameters), and basic levels of ac-
ceptability (“I would be willing to play this game again in the future”; Figure 2a,b). We attempted
to increase the engagingness of our tasks via two different approaches: gamification (Cheng and
Ebrahimi, 2023; Long et al., 2023), and providing opportunity for self-reflection or insight (Lee
et al., 2023; Singh et al., 2021). Finally, where possible, we also tested measures for robustness
to important sociodemographic differences between participants (Methods, Figure S2).

Although the above strategies necessarily involve some trade-offs against ideal psychometric
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properties and other important features (e.g., construct validity; see General Discussion), we
believe that consideration of these issues at early stages is vital to the development of potentially
clinically-useful measures (Paulus et al., 2016).

Figure 2: Optimized task designs for measuring cognitive mechanisms relevant to goal-
setting and cognitive restructuring components of behavioural activation and cognitive
therapies. a The gamified reward-effort decision-making task, which measures sensitivity to
required effort and potential reward when deciding between different effortful actions (play a
demo version here). b The causal attribution task, which measures latent tendency to attribute
positive and negative everyday events to internal (vs external) and global (vs specific) causes
(play a demo version here). Left, screenshots of the final task versions, alongside average task
completion times and % user-acceptability ratings. Centre, right, psychometric properties of de-
rived cognitive measures (independent parameter recovery during simulation-based calibration
analysis and observed test-retest reliability).θ, parameters describing latent tendency to endorse
internal/global attributions for positive and negative events; Rµ, posterior mean estimates for
observed test-retest reliability of each model parameter.
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TESTING EFFECTS OF INTERVENTIONS BASED ON DIFFERENT COMPONENTS OF COGNITIVE-
BEHAVIOURAL THERAPY ON THEIR PROPOSED COGNITIVE MECHANISMS

To test whether interventions derived from different components of behavioural activation and
cognitive restructuring therapies impact their proposed cognitive mechanisms, we next con-
ducted a set of studies in which participants completed the relevant task-based assessment twice,
with 1:1 random assignment to either the active intervention or a well-matched control inter-
vention in between (i.e., a mixed within/between-subjects design; Figure 1e). In all cases,
initial discovery experiments were followed up with replication tests, to assess the reliability of
findings.

For all studies, participants were recruited from an online research participation platform (Pro-
lific), were required to be based in the UK, 18-65 years old, and fluent in English. At the end
of the study, participants completed demographic and psychological symptom self-report mea-
sures (see Methods). Samples showed some evidence of self-selection for interest in mental
health research, given on average 45% of participants reported previous treatment for a mental
health problem, and moderate endorsement of current depression and social anxiety symptoms
(Table S1, Figure S3). Samples were relatively well-balanced in terms of age, gender, and neu-
rodiversity, but were predominantly White (Table S1).

EFFECTS OF A GOAL-SETTING INTERVENTION DERIVED FROM BEHAVIOURAL ACTIVATION
THERAPY ON REWARD-EFFORT DECISION-MAKING

Role of goal-setting in behavioural activation therapy. The use of activity-scheduling and
goal-setting exercises is a core element of behavioural activation therapy for low mood (Martell
et al., 2013). Acting according to a plan, rather than relying on internal state or mood, is
thought to increase the likelihood of both acting and subsequently experiencing natural rewards,
resulting in a positive reinforcement loop that serves to promote further activity and reward
experience (Quigley and Dobson, 2017). In theory, acting according to a predetermined plan
could boost activity levels either by making potential rewards more salient (increasing reward
sensitivity), or by lowering the perceived level of effort required (decreasing effort sensitivity),
when deciding if a particular action is worth taking (Reiter et al., 2021; Huys et al., 2022)
(Figure 1c).

Investigating the effects of goal-setting on reward-effort decision-making. Here, we made
use of the fact that reward-effort decision-making has been well-studied in cognitive neuro-
science (e.g., Treadway et al. 2009; Bonnelle et al. 2015; Berwian et al. 2020). Starting from a
previously-validated task design (Berwian et al., 2020), in conjunction with the recent introduc-
tion of online game engines into behavioural neuroscience research (Wise and Dolan, 2020), we
developed a gamified task that was short, acceptable to users, and could reliably identify reward
and effort sensitivity parameters from choice data (Figure 2a, Methods). Briefly, on each trial
participants were asked to choose between two options, which varied both in terms of required
physical effort (fast presses on a mouse or touchscreen) and offered reward amount (number
of game coins, which were converted into a cash bonus at the end of the study). Choices were
always non-dominated (the higher reward option required greater effort), except for two ‘catch’
trials used as internal attention checks (see Methods). After choosing an option, participants
had to exert the required effort within a time-limit (10s) to gain the reward. After each block
of trials (four per task), participants were asked to rate their sense of achievement on successful
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effort exertion, sense of pleasure in gaining rewards, and boredom levels, using an interactive
slider.

The goal-setting intervention consisted of text describing the importance of setting realistic
(achievable) goals, followed by a short comprehension quiz (see Methods). When complet-
ing the game for the second time, participants in the goal-setting condition were asked to set a
goal (number of coins they would like to earn, out of the maximum possible available) prior to
completing each block. Within each block, progress towards their goal was then tracked visually
across trials. The control intervention consisted of matched-length information about different
kinds of computer games, also followed by a quiz (for intervention reading times and quiz re-
sults, see Figure S5c,d). At the start of each block, control participants were asked to rate how
much they enjoyed different kinds of games, but the task remained otherwise identical.

Goal-setting decreases effort sensitivity during reward-effort decision-making. In both ini-
tial discovery (N=100) and replication samples (N=102), linear mixed-effects modelling of
individual trial data revealed a significant interaction between intervention condition and time-
point (pre vs post intervention) on proportionate choice of higher-effort higher-reward options
(F1,8697 = 14.5, F1,8871 = 34.8; p < 0.001) – with greater choice of higher-effort options at time
2 in the goal-setting group (Supplementary Results, Figure S4). Analysis via our pre-specified
Hierarchical Bayesian analysis model (as developed during the task design-optimization pro-
cess) revealed that, in both samples, this was due to a specific decrease in effort sensitivity at
time 2 for individuals who completed the goal-setting intervention(posterior means for group-
level effect of the goal-setting intervention on effort sensitivity at time 2=-0.57 [90% posterior
Credible Interval (CI) -0.91,-0.23], -0.32 [90% posterior CI -0.65,-0.004]; Figure 3, Table S2).
Mean posterior predictive accuracy of the model for each sample was 0.81 [SD 0.16] and 0.83
[SD 0.15], and pseudo-r2 values (reflecting relative proportion of variance in choice behaviour
explained, compared to a chance model) were 0.51, 0.49, respectively.

Goal-setting changes subjective evaluation of effort expenditure and reward receipt. In
line with the theory that goal-setting leads to a decrease in effort sensitivity when deciding to
act, in turn leading to greater experience of reward, in both samples participants in the goal-
setting condition reported greater sense of achievement on successful effort exertion (F1,97 =
21.0, F1,100 = 23.7), greater pleasure on gaining rewards (F1,97 = 20.4, F1,100 = 12.7), and lower
boredom levels, during the second game (F1,97 = 33.8, F1,100 = 4.2; all p < 0.05; Supplementary
Results, Figure S4).

Emphasizing the importance of setting achievable goals leads to increased effort expen-
diture over time. Consistent with the importance behavioural activation therapy places on
both setting achievable goals and gradual increasing effort expenditure over time (Martell
et al., 2013), we found that participants in the goal-setting condition tended to both exceed
their goals within each block, and increase the ambitiousness of their goals across task blocks
(F2.4,236 = 19, F2.5,245 = 8.9; p < 0.001; Supplementary Results, Figure S5).
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Figure 3: A goal-setting intervention based on principles of behavioural activation therapy
resulted in a selective decrease in effort sensitivity during reward-effort decision-making,
compared to a well-matched control condition. a Posterior mean (and SD) parameter es-
timates for each participant at time 1 (pre-intervention) vs time 1 (post-intervention), by in-
tervention condition, in the initial discovery sample (goal-setting intervention, N=49; control
intervention, N=51). Lines of best fit for posterior mean parameter estimates at time 1 vs time
2 for individuals in each intervention group are plotted for illustration purposes. b Posterior
parameter estimates for group means (over all participants/intervention conditions) for each
parameter at each time point, and the additional effects of goal-setting intervention in active
group participants at time 2, in the initial discovery sample. Thick inner lines represent 50%,
and thin outer lines represent 90% Credible Intervals, the point estimate is the mean, and shad-
ing represents posterior probability density, a.u., arbitrary units. c The same plot as (a), for the
independent replication sample (goal-setting, N=50; control, N=52). d The same plot as (b),
for the independent replication sample.
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EFFECTS OF A COGNITIVE RESTRUCTURING INTERVENTION ON CAUSAL ATTRIBUTION OF
POSITIVE AND NEGATIVE EVENTS

Role of cognitive restructuring in cognitive therapy. A core idea underlying cognitive therapy
is that it is often how we interpret things that happen to us, rather than the events themselves,
that shapes how we end up feeling (Beck et al., 1987). In particular, learned helplessness theory
suggests that, in some individuals, persistent low mood results from a heightened tendency to
attribute negative events to causes which are internal (related to the self, compared the outside
world), global (likely to be active in all situations, rather than this specific one alone), and stable
(likely to persist in time, rather than change in the future) (Abramson et al., 1978). Therefore, a
key focus of cognitive restructuring is training individuals to identify unhelpful attributions, and
practising consideration of alternative and helpful explanations (‘reappraisal’) (Clark, 2022).

Whilst there is robust evidence of heightened attribution of positive events to internal and global
causes in healthy individuals (an effect which has been interpreted as a self-serving or self-
protective bias), overly internal and global attributions of negative events have been identified
in currently depressed individuals, and predicts future depressed mood (Mezulis et al., 2004;
Pearson et al., 2015). However, it is not clear 1) the extent to which addressing these different
dimensions (internality, globality) is important in cognitive restructuring, and 2) the extent to
which improvements in mood relate to a decreased tendency to make ‘depressogenic’ attribu-
tions (internal/global attributions of negative events), versus increased use of self-protective or
compensatory strategies (internal/global attributions of positive events) (Barber and DeRubeis,
1989; Huibers et al., 2021) (Figure 1c).

Investigating the effects of cognitive restructuring on causal attribution. Here, we present
data from a novel hybrid self-report/task measure (‘causal attribution task’), developed from an
analysis of previous scenario-based attribution tasks, item-response theory-based optimization,
and consideration of sensitivity to potential sociodemographic moderators (age, gender, func-
tional disability/neurodivergence, and minoritized group status; Methods, Figure S2). Briefly,
participants were presented a series of brief descriptions of events, and asked to choose which
of four listed causal explanations they thought the most likely, if such an event had happened
to them. Half the events were positive and half negative, and the four potential explanations
varied orthogonally in terms of describing internal (vs external) and global (vs specific) causes.
Extensive pilot testing revealed that data from two alternative task versions could be used to re-
liably identify parameters governing probability of endorsement of an internal (vs external) and
global (vs specific) causes, separately for positively and negatively valenced events (Methods,
Figure 2b).

The cognitive restructuring intervention consisted of information about a cognitive model of
mood (link between interpretations of events and feelings), interactive exercises identifying
helpful and unhelpful attributions of the same events, inviting people to practise generating
alternative explanations for recent events in their own lives, and a summary comprehension
quiz (Methods). The control intervention was based on materials from emotion-focused therapy
(Greenberg, 2015), and was closely matched in terms of length, interactivity, and self-relevant
exercise content – although, importantly, it did not contain reference to cognitive interpreta-
tions influencing feelings or include reappraisal activities (e.g., reflection on whether a partic-
ular emotional reaction is helpful or not; for intervention completion times see Figure S6c,d).
According to
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Cognitive restructuring decreases tendency to attribute negative events to internal (self-
related) causes. In both initial discovery (N=100) and replication samples (N=100), linear
mixed-effects modelling of individual trial data revealed a significant interaction between inter-
vention condition and time-point (pre vs post intervention) on proportionate choice of internal
attributions for negative events (F1,6294 = 10.9, F1,6294 = 5.0; both p < 0.03) – with lower
choice of internal attributions for negative events at time 2 in the cognitive restructuring group
(Supplementary Results, Figure S6). Analysis via our pre-specified Hierarchical Bayesian model
revealed that, in both samples, this was due to a decrease in the model parameter describing the
latent tendency of individuals to internally-attribute negative events following the restructuring
intervention (posterior means for group-level effect of the cognitive restructuring intervention
at time 2=-0.56 [90% posterior CI -0.87,-0.24], -0.34 [90% posterior CI -0.61,-0.05]; Figure 4,
Table S3). Mean posterior predictive accuracy of the model for each sample was 0.74 [SD 0.11]
and 0.73 [SD 0.11] for internal attributions, and 0.69 [SD 0.11] and 0.68 [SD 0.11] for global
attributions. Pseudo-r2 values were 0.64, 0.64, for internal attributions, and 0.59, 0.58 for
global attributions, respectively.

EFFECTS OF INTERVENTIONS BASED ON DIFFERENT COMPONENTS OF COGNITIVE-BEHAVIOURAL
THERAPY ON THEIR PROPOSED COGNITIVE MECHANISMS: INTERIM SUMMARY

In two parallel sets of studies, we found 1) evidence that a goal-setting intervention based on
principles of behavioural activation therapy reliably reduced sensitivity to required effort (but
not reward) levels when choosing between different actions, and 2) that a restructuring inter-
vention based on cognitive therapy reliably reduced a tendency to attribute negative events to
self-related or internal causes (an aspect of attributional style thought to contribute to symptoms
of low mood), but did not impact a tendency to make overly-general or global attributions.

However, it is not possible to tell on the basis of results so far whether the effects of each inter-
ventions were specific to the task administered in each study – or whether each intervention’s
effects might ’spill over’ to other cognitive domains (Figure 1b).
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Figure 4: A cognitive restructuring intervention based on cognitive therapy resulted in
decreased internal attribution of negative events, compared to a well-matched control
condition. a Posterior mean (and SD) parameter estimates for each participant at time 1 (pre-
intervention) and time 2 (post-intervention), by intervention group, in the initial discovery sam-
ple (cognitive restructuring intervention, N=49; control intervention, N=51). Lines of best fit
for mean time 1 vs time 2 estimates for individuals in each group are plotted for illustration
purposes. Continued on the next page
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Figure 4: b Posterior parameter estimates for group means (over all participants/intervention
conditions) for each parameter at each time point, and the additional effect of intervention in
cognitive restructuring group participants at time 2, in the initial discovery sample. Thick inner
lines represent 50%, and thin outer lines represent 90% Credible Intervals, the point estimate is
the mean, and shading represents posterior probability density, a.u., arbitrary units. c The same
plot as (a), for the independent replication sample (cognitive restructuring, N=44; control,
N=56). d The same plot as (b), for the independent replication sample. θ, parameters describing
latent tendency to endorse internal/global attributions for positive and negative events.

SPECIFICITY OF INTERVENTIONS TO PROPOSED COGNITIVE MECHANISMS

To test whether effects of our interventions were specific to their proposed cognitive mecha-
nisms, we next carried out a study using a 2 × 2 intervention × task crossover design (Figure 1f).
Specifically, participants were separately randomized to task and intervention conditions, in or-
der to investigate the effects of goal-setting vs cognitive-restructuring on reward-effort decision-
making, and cognitive-restructuring vs goal-setting on causal attribution. Participants were re-
cruited as previously, and are described in Table S1.

Goal-setting but not cognitive restructuring affects effort sensitivity during reward-effort
decision-making. For crossover study participants who were randomized to complete the
reward-effort decision-making task (N=197), Hierarchical Bayesian analysis revealed that goal-
setting but not cognitive restructuring resulted in decreased effort sensitivity during reward-
effort decision-making (posterior mean for group-level effect of goal-setting vs restructuring
=-0.48 [90%CI -0.74,-0.22], Figure 5a,b, Table S4).

Cognitive restructuring but not goal-setting affects internal attribution of negative events.
For crossover study participants who were randomized to complete the causal attribution task
(N=208), Hierarchical Bayesian analysis revealed that the cognitive restructuring but not goal-
setting intervention resulted in reduced internal attribution of negative events (posterior mean
for group-level effect of restructuring vs goal-setting on negative events =-0.28 [90%CI -0.44,-
0.12], Figure 5c,d, Table S4) Further, in this sample, cognitive restructuring was associated
with increased internal attribution of positive events (posterior mean for group-level effect of
restructuring vs goal-setting on positive events =0.46 [90%CI 0.22,0.70]).

Of note, under this analysis framework, effects common to both intervention conditions would
be expressed as changes in group-level parameter means between time 1 and time 2 - however
posterior distributions (90% Credible Intervals) for group means were overlapping for all pa-
rameters across time-points (Figure 5b,d). Therefore, data from this study provided not only a
further replication of the effects found in the first set of studies, but showed that the effects of
each intervention appeared specific to their relevant theoretically-informed task and parameter
measures.
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Figure 5: In a crossover design, effects of goal-setting and cognitive restructuring inter-
ventions were found to be specific to their relevant cognitive mechanisms. a Posterior
mean (and SD) parameter estimates for each participant at time 1 (pre-intervention) and time
2 (post-intervention), by intervention group, for the crossover study participants randomized to
the reward-effort decision-making task (goal-setting, N=99; cognitive restructuring, N=88). b
Posterior parameter estimates for group means (over all participants) for each parameter at each
time point, and the additional effect of the goal-setting intervention at time 2, in the crossover
study participants who completed the reward-effort decision-making task. Compared to restruc-
turing, goal-setting reduced effort sensitivity. Thick inner lines represent 50%, and thin outer
lines represent 90% credible intervals, the point estimate is the mean, and shading represents
posterior probability density, a.u., arbitrary units. c The same plot as (a), for the crossover
study participants who were randomized to the causal attribution task (cognitive restructuring,
N=106; goal-setting, N=102). d The same plot as (b), for the additional effect of the cogni-
tive restructuring intervention at time 2, in the crossover study participants who completed the
causal attribution task. Compared to goal-setting, restructuring reduced internal attribution of
negative events, and increased internal attribution of positive events.
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RELATING MAGNITUDE OF INTERVENTION EFFECTS TO INDIVIDUAL SYMPTOM PROFILES

Finally, we conducted an exploratory analysis to determine if individual differences in psycho-
logical symptom profiles might moderate the effects of interventions on our cognitive measures.
To increase power, initial discovery and replication samples from the sets of studies described
above were first combined for each task. We then sought to determine if any effects in these
combined samples were replicated in the crossover study data (where comparison interventions
were less well-matched in terms of e.g., length, interactivity).

Heterogeneity of treatment effects analysis. Across tasks and measures, we found evidence
of moderate response variation in terms of change in mean effort sensitivity following the goal-
setting intervention (point estimate for SD of individual responses=0.43 [95%CI 0.32,0.55]),
and mean tendency to attribute positive events to internal causes following the cognitive restruc-
turing intervention (point estimate for SD of individual responses=0.40 [95%CI 0.04,0.76]).

Joint modelling of task and self-report data. In order to test if symptom profiles were re-
lated to magnitude of either of these responses, individual symptom data were combined into
the previously described behavioural task analysis models. Following Haines (2021), within the
joint model, individual item self-report data were analysed using item response theory (IRT).
Specifically, we hypothesized the existence of two latent traits in the symptom data, labelled
‘behavioural amotivation’ (symptoms of anhedonia and behavioural apathy: constructed from
Apathy Motivation Index behavioural amotivation items and PHQ9 items indexing anhedonia
and lethargic symptoms) and ‘negative cognition’ (negative self-beliefs associated with depressed
mood: constructed from Dysfunctional Attitude Scale items and PHQ9 items indexing feelings
of hopelessness and failure; see Methods). These traits were chosen on the basis of propos-
als that behavioural treatments might be more effective for clinical presentations dominated by
the former, and cognitive treatments for the latter (e.g., Beck et al. 1987; Forbes 2020). Fig-
ure 6a,b shows that the pattern of item contributions to each latent trait estimate was relatively
stable across samples (for the highest discriminability items in each sample see Supplementary
Results).

Individual differences in the effect of goal-setting on reward-effort decision-making. In the
combined goal-setting vs control intervention sample (N=195), higher amotivation estimates
were associated with both greater effort sensitivity at baseline (posterior parameter estimate
for group-level β weight of trait amotivation estimates on time 1 effort sensitivity estimates,
βBASE=0.24 [90%CI 0.06,0.44]), and greater magnitude of response to the goal-setting inter-
vention (posterior estimate for β weight of amotivation on group-level active intervention effect,
βINT=-0.37 [90%CI -0.60,-0.15], Figure 6c, Table S5). The direction (but not magnitude) of
these effects was replicated in the less well-controlled crossover sample, where amotivation
and negative cognition estimates could be included in the same model (N=185, βBASE=0.16
[90%CI -0.12,0.51], βINT=-0.11 [90%CI -0.62,0.37], Figure 6d, Table S5). Evidence that indi-
viduals higher in amotivation differed in baseline effort sensitivity and showed greater response
to the goal-setting intervention was therefore somewhat inconclusive.

Individual differences in the effect of cognitive restructuring on causal attribution. In
the combined restructuring vs control intervention sample (N=200), higher negative cognition
estimates were associated with a lower tendency to attribute positive events to internal causes
at baseline (βBASE=-0.16 [90%CI -0.29,-0.04]), but not magnitude of change in this measure
following restructuring (βINT=-0.24 [90%CI -0.55,0.07], Figure 6e, Table S5). In the crossover
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sample (N=205), there was borderline evidence that both higher amotivation symptoms and
higher negative cognition were associated with lower tendency to internally attribute positive
events at baseline (βBASE=-0.18 [90%CI -0.43,0.01], -0.20 [90%CI -0.46,0.01]). There was
again no relationship between negative cognition and change on this measure following the
restructuring intervention, but there was evidence of a negative relationship with amotivation
(βINT=-0.45 [90%CI -0.97,-0.04], Figure 6f, Table S5). This suggests that whilst symptoms
of both amotivation and negative cognition are associated with lower baseline self-protective
attributional tendencies, only greater amotivation symptoms were associated with response on
this measure to an intervention based on cognitive restructuring - with greater amotivation
relating to smaller increases in internal-positive attribution tendency.

In summary, we found some evidence for higher amotivation symptoms relating to greater re-
sponse to a goal-setting intervention based on behavioural activation therapy, but a smaller
response to a restructuring intervention based on cognitive therapy, in terms of change in un-
derlying cognitive mechanisms. However, we caution that these results are very preliminary and
will require replication in the future work.

Figure 6: Relationships between psychological symptoms and magnitude of intervention
effects, in joint models of behavioural and self-report data. Continued on the next page.
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Figure 6: a Left, posterior item discriminability estimates (IRT model parameters describing
how well an item differentiates between individuals scoring high and low on a latent trait)
for behavioural amotivation in the combined reward-effort decision-making samples. Top-
discriminating items for behavioural amotivation included “little interest or pleasure in doing
things”, “feeling tired or having little energy”, and ”I don’t like to laze around” (reverse-scored).
Centre, right; posterior discriminability estimates for amotivation and negative cognition in
crossover study participants who completed the reward-effort decision-making task. Top dis-
criminating items for negative cognition included “If other people know what you are really
like, they will think less of you”, and “If I don’t set the highest standards for myself, I am likely
to end up a second-rate person”. The dotted lines represents a threshold of posterior discrim-
inability > 1, which can be understood as representing a meaningful contribution to latent trait
estimates. AMI x, Apathy Motivation Index behavioural subscale items; PHQ 1, “little interest or
pleasure in doing things”; PHQ9 4, “feeling tired or having little energy”. DAS x, Dysfunctional
Attitude Scale (short form) items; PHQ 2, “feeling down, depressed, or hopeless”; PHQ9 6,
“feeling bad about yourself or that you are a failure”. b The same plot as (a), for trait nega-
tive cognition in the combined causal-attribution task samples (left), and negative cognition and
behavioural amotivation in crossover study participants who completed the causal-attribution
task (centre; right). c Posterior estimates from the joint self-report-task model in the combined
reward-effort decision-making sample for the influence of behavioural amotivation on effort
sensitivity at baseline (βBASE amotivation), and on the effect of the goal-setting intervention on
effort sensitivity at time 2 (βINT amotivation) (arbitrary units). d The same plot at (b), for the
crossover study participants who completed the reward-effort decision-making task, including
the influence of negative cognition on baseline and intervention-induced changes in effort sensi-
tivity (βBASE negative cognition, βINT negative cognition). e The same plot as (c), for influence
of negative cognition on baseline and intervention-induced changes on internal attribution of
positive events in the combined causal-attribution task sample. f The same plot as (d), for
the influence of behavioural amotivation and negative cognition on baseline and intervention-
induced changes in internal-positive attributions in crossover study participants who completed
the causal-attribution task. In all panels, thick inner lines represent 50%, and thin outer lines
represent 90% credible intervals, the point estimate is the mean, and shading represents poste-
rior probability density.

GENERAL DISCUSSION

Over the last half century, there have been many calls for research into mechanisms by which
existing effective psychotherapy treatments work (Kazdin, 2009; Huibers et al., 2021). Large
individual patient data meta-analyses have provided some hints of differences in effects be-
tween treatments, and in different groups of individuals given the similar treatments (Cuijpers
et al., 2019, 2022; Furukawa et al., 2021). Recent analyses of large-scale intensively-sampled
mood data has also shown that symptom clusters representing anhedonia/lethargic symptoms
and depressed mood/feelings of worthlessness exhibit different dynamic properties within and
between individuals – which may represent different opportunities for intervention (Ebrahimi
et al., 2021). However, it remains largely unclear which individuals are more likely to benefit
from different kinds of treatment – in particular, cognitive vs behavioural therapies – and this
is an active area of ongoing research (Craske, 2022; Driessen et al., 2022). Further, a key is-
sue in psychotherapy process research is distinguishing causal relationships from correlates of
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treatment response (Lorenzo-Luaces et al., 2015; Eronen, 2020). This is critical, as only the
former are likely to support the longer-term goal of truly effective treatment personalization.
Here, we show that using well-validated cognitive measures, in conjunction with experimental
designs capable of supporting causal inference, we can test directly whether different proposed
mechanisms are impacted by interventions derived from distinct components of psychological
therapies.

We found that a goal-setting intervention, that included education about the importance of
setting achievable goals and salient visual tracking of progress towards goals, reliably led to
increased selection of higher-effort/higher-reward actions. Model-based analysis revealed that
this was due a selective reduction in sensitivity to required effort levels (but not sensitivity to
potential rewards), when deciding how to act (Figure 4). Significantly, this change in decision-
making was was accompanied by an increased sense of achievement for actions and experienced
pleasure for rewards – suggesting not only that goal-setting decreased subjective weighting of
effort but that the resulting energizing of overall action levels may be sufficient to kick-start
a positive reinforcement cycle through which behavioural activation therapy is thought to im-
prove mood (Quigley and Dobson, 2017; Huys et al., 2022). This implies that a focus on setting
achievable rewards (which are gradually increased over time), and active monitoring of com-
pletion of activities (e.g., via monitoring forms) may be key active ingredients of behavioural
activation therapy. It is not clear from our current results which particular features of our inter-
vention (education about achievable goals, pre-commitment to a specific target, and monitoring
of progress towards this target) were most potent in effecting this change, but this can be further
dissected in future work. It will also be important to test if the effects identified here general-
ize from in-game actions and rewards to the kinds of everyday effortful activities and rewards
employed in a therapeutic context (see below).

We also found that a restructuring intervention, that included education about a cognitive model
of low mood (”thoughts affect feelings”) and reappraisal practice, reliably reduced a tendency to
attribute negative events to internal (self-related) causes, whilst not robustly affecting a ten-
dency to assign events to overly-general or global causes (Figure 5). Both heightened internal
and global attributional styles are implicated in depressed mood (Mezulis et al., 2004; Pearson
et al., 2015), and indeed we observed associations between both these tendencies and depres-
sion symptoms and negative self-beliefs in our samples (Figure 6, Figure S7). We note that,
in general, participants found the internal-external dimension of choice options easier to parse
than the global-specific dimension, which may explain the lack of robust effects on this mea-
sure. It is not currently clear whether this is a limitation of our task materials or reflects a more
general difficulty in understanding this aspect of attributional style, something that can be use-
fully explored in future work (e.g., Mason et al. 2023). Further, it is an open question whether
expression of these kinds of belief is a cause or consequence of low mood (Cristea et al., 2015;
Ezawa and Hollon, 2023). Here, we provide initial evidence that cognitive restructuring directly
impacts attributional choice in a realistic scenario-based task that is robust to sociodemographic
differences. In the future, this kind of measure may enable more precise and reliable tracking
of changes in causal attribution over the course of treatment, and determination of whether or
not this predates symptom change.

A critical aspect of our results is our demonstration that changes in theoretically-derived cogni-
tive measures were specific to relevant interventions. This is a vital step towards an eventual
goal of providing more targeted or personalized psychotherapy treatment, as if different cogni-
tive processes are affected by multiple treatment components to the same extent, then it would
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render it hard to leverage differential administration or dosage of components to address rela-
tive deficits (or capitalize on relative strengths) on the basis of measurements of these processes
(Eronen, 2020). Finally, we presented preliminary evidence that symptoms of behavioural amo-
tivation (anhedonia and lethargy) may relate to greater responses to goal-setting, and lesser
responses to cognitive restructuring. This accords with theoretical notions that behavioural
treatments may be preferable for clinical presentations dominated by this kind of symptom
profile (Beck et al., 1987; Forbes, 2020) – although these findings should be interpreted with
caution as they did not replicate fully across samples.

The major limitation of these initial proof-of-concept results is that they concern the effects of
custom interventions based on components of psychological therapies, as opposed to modules
of real, proven to be effective, cognitive and behavioural treatments. Extension of our findings
to this context is therefore a critical next step in constructing a chain of evidence that unpacks
the mechanisms by which real-world therapies work. Such a translation would enable us to
complete a vital link that relates change in cognitive mechanisms to parallel change in psy-
chological symptoms following treatment completion. It remains possible there are too many
differences between our toy interventions and actual psychotherapies (even highly controlled
digitally-delivered content) for our results to hold. However, we believe that initial evidence of
replicable effects of therapy-derived interventions on theory-based mechanisms, and, in partic-
ular, evidence of specific effects of these interventions, represents a foundational step prior to
embedding such tests in resource-intensive contexts, such as clinical trials or treatment programs
(Paulus et al., 2016).

An important lesson learned over the course of these studies is that the development of ‘good’
measures of cognitive processes fundamentally involves the management of various competing
trade-off factors (Zorowitz and Niv, 2023). Specifically, increasing user engagement via gam-
ification strategies (e.g., our reward-effort task) may involve a trade-off between noisiness of
data, and face or construct validity. Conversely, measures with increased face validity (e.g.,
our scenario-based causal attribution measure) may involve a different degree of insight than
more behavioural tasks, where individual differences in interpretation or understanding of the
state-space may be a source of noise. Optimal points for these trade-offs may be hard to judge
on the basis of isolated quantitative measurements (such as test-retest reliability), and better
understood in the context of qualitative input from future end-users (Bear et al., 2022).

In conclusion, digital therapies can help reduce the treatment gap in mental health service pro-
vision (Thornicroft et al., 2017; Torous et al., 2021), in particular for underserved populations
(Schueller et al., 2019). However, increasing user engagement is likely to be key for greater up-
take of digital therapeutics (Graham et al., 2019; Borghouts et al., 2021). Promising targets for
increasing engagement with such services include increasing value to end users (e.g., providing
knowledge back), and evidence of personalization of content (Szinay et al., 2020). We argue
that greater knowledge about the mechanisms via which established psychological treatments
work is an important step towards achieving these goals (Craske et al., 2023).
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METHODS

DATA AND MATERIALS AVAILABILITY STATEMENT

Code for implementing both tasks and analyses described here is available at the study github
repository. Anonymized data will be deposited at the same location upon acceptance of this
manuscript for peer-reviewed publication.

ETHICAL APPROVAL

All participants gave written informed consent and all studies were approved by the UCL Re-
search Ethics Committee (project ID 21029/001).

GENERAL METHODS

All analyses were carried out in R version 4.1.2 (The R Foundation for Statistical Computing,
2021), using RStudio version 2022.02.0 (RStudio, PBC, 2022).

Hierarchical Bayesian modelling

Model evaluation and fit procedures were carried out according to Bayesian workflow recom-
mendations (Gelman et al., 2020; Schad et al., 2021), with results of Bayesian analyses reported
in accordance with recent guidelines (Kruschke, 2021). Model parameters were estimated us-
ing Markov-Chain Monte Carlo (MCMC) sampling as implemented in Stan 2.21.0 (Carpenter
et al., 2017), using RStan 2.21.3 (Stan Development Team, 2021). MCMC chains were initi-
ated with random starting values, and posterior distributions were formed using 4 chains of
2000 iterations, with 1000 discarded warm-up samples (i.e., 4000 kept iterations per model).
Convergence of sampling chains was assessed via inspection of trace plots and Gelman-Rubin
(R̂) statistics for each parameter (Gelman and Rubin, 1992). Assessment for sampling difficul-
ties and parameter collinearity was via inspection of bivariate marginal posterior distributions
between pairs of parameters. All models used generic weakly-informative priors (see Supple-
mentary Methods).

At the initial task/measure development stage, different models of the same data were compared
via leave-one-out cross-validation, using the R package loo (Vehtari et al., 2017). Given our
concern with optimizing for task brevity (whilst considering multiple potential mechanisms of
behavioural change; see main text), priority was accorded to simple models with few parameters
– with a model comparison metric based on out-of-sample prediction guarding against over-
fitting. For the main analyses reported here, two model-agnostic ‘goodness-of-fit’ measures are
reported. Posterior predictive accuracy was calculated as the match between replicated choice
data generated stochastically from posterior parameter estimates and task trial arrays, and the
observed data from each participant (means and SDs across participants are reported). Pseudo-
r2 statistics, which reflect the amount of variance explained by the model relative to a model of
pure chance, were calculated as 1−L/C, where L is the summed log likelihood over participants,
and C is the chance likelihood of observing responses (for two choice options, log(0.5)t) (Daw,
2011).

For experimental effects of interest (e.g., the group-level effect of receiving the active vs control
intervention on parameter estimates at time 2), parameters were assessed using 90% credi-
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ble intervals (CIs), with a 90% CI excluding zero interpreted as representing evidence for a
meaningful contribution to posterior parameter estimates. Although this choice of threshold is
somewhat arbitrary, it follows conventions in the literature, and recommendations of use of a
<95% CI for sample sizes less than 10,000 (McElreath, 2016). Distributions of posterior param-
eter estimates and CIs were visualized using the R packages bayesplot (Gabry et al., 2019) and
tidybayes (Kay, 2022).

Simulation-based calibration analysis

Simulation-based calibration (SBC) analysis was used to validate our modelling and inference
procedures for both tasks and sets of measures (Talts et al., 2020). Briefly, this involves gener-
ating draws from the prior predictive distribution of a generative model (creating N simulated
datasets), then fitting the model to each simulated dataset and obtaining D independent draws
from the model posterior. For each parameter of interest, the rank of the simulated value within
the posterior draws is then calculated. If the data generation and inference procedure works as
expected, then the resulting ranks should be uniformly distributed across [0, D] (Modrák et al.,
2022). Here, we generated N=1000 datasets based on independent draws from the prior dis-
tributions of each parameter, which were specified generously based on the empirical posterior
estimates of parameter distributions observed in pilot data. We then took D=2000 posterior
draws (after discarding 1000 warm-up samples), across two sampling chains. Graphical sum-
maries of SBC results were generated using the R package SBC (Kim et al., 2023).

Test-retest reliability analysis

Recent discussions highlight adequate test-retest reliability as a prerequisite for detection of
true individual differences in a measure (Hedge et al., 2018; Haines et al., 2020b; Brown et al.,
2020; Zorowitz and Niv, 2023). Here, we estimated test-retest reliability using the approach
described in (Rouder and Haaf, 2019; Haines et al., 2020b). Specifically, data from two time
points (repeat test administration in the same sample of participants) were fit using a single
hierarchical model, with separate group means for each parameter at each time point, and indi-
vidual parameter estimates at each time point assumed to be drawn from a multivariate normal
distribution, and a uniform prior over [−1, 1] on correlation of individual values across time-
points (see Equation 3, Equation 9). Posterior R values for correlation of individual parameter
estimates across time-points are then reported as an estimate of test-retest reliability, that suf-
ficiently takes into account both relatedness of different measurements and measurement error
(precision) of individual estimates.

Self-reported demographic and clinical information

At the end of each study, participants completed a set of brief self-report measures to provide
information about their recent experience of mental health symptoms, and other relevant so-
ciodemographic information. Symptoms of low mood were measured using The 9-item Patient
Health Questionnaire (PHQ9) (Kroenke et al., 2001). We also included the 3-item Social Phobia
Inventory (miniSPIN), a brief measure of social anxiety symptoms (Connor et al., 2001), given
our previous observations that social anxiety is relatively elevated in Prolific samples. The Apa-
thy Motivation Index (AMI), which measures apathy and amotivation across behavioural, social,
and emotional domains (Ang et al., 2017), was included for reward-effort decision-making sam-
ples, given the hypothesis that behavioural activation therapy may be particularly effective for
individuals with disrupted reward or effort processing (Forbes, 2020; Reiter et al., 2021). The
Dysfunctional Attitudes Scale (short form) (DAS), a measure of negative self-beliefs observed in
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some depressed people (Beevers et al., 2007), was included for causal attribution task samples,
as it has previously been shown to be sensitive to cognitive treatment of low mood (Cristea
et al., 2015).

The demographic measure included questions about participant gender identity, age, neurodi-
vergence (defined as “a term for when someone processes or learns information in a different
way to that which is considered ’typical’: common examples include autism and ADHD”), previ-
ous treatment for a mental health problem, disability across World Health Organization Disabil-
ity Assessment 2.0 domains of functioning (World Health Organization, 2012), and financial,
housing, and employment status (given these factors have previously been shown to relate to
treatment outcomes for depression; Buckman et al. (2022). All self-report batteries included
two infrequency items (in which some responses are logically invalid or highly improbable), in
order to detect potential inattentive responding (Zorowitz et al., 2021). Participants were re-
quired to provide correct responses to both items in order to be included in analyses including
self-report data.

REWARD-EFFORT DECISION-MAKING STUDIES

Reward-effort decision-making task

Code for implementing the version of the task described here and a link to a demo version of
the game is available here. The task was coded in javascript using phaser 3.23.0, a framework
for creating HTML5 games for desktop and mobile devices (https://phaser.io/; Photon Storm,
2020).

Participants were informed that they were travelling through a strange land, covered in rivers
and streams. At regular points along their journey, they would be required to power up their
magic umbrella, in order to fly across the water. At each crossing point, they could choose
between different routes. Different routes would allow them to collect different numbers of
coins (with total coins converted into a cash bonus at the end of the study), but required different
amounts of effort to cross. For each route, they would have to press or click quickly an on-screen
‘power’ button, until they reached the required effort level to cross. Effort levels were presented
as percentages of maximal power, which (unknown to participants) was individually calibrated
at the start of the study during a series of practice trials, designed to elicit maximal possible
effort levels (press rates) during the time limit (10s). In order to avoid ‘gaming’ of practice
trials, a minimal effort level was also applied.

The main task consisted of 44 choice trials divided into 4 blocks. This included two ‘catch’ (non-
dominated choice) trials, where the highest reward was offered for the lowest effort level. In
order to be included in the analysis, participants were required to select the ‘correct’ answer on at
least 1 of the catch trials. At the end of each block, participants rated their sense of achievement
upon successful effort exertion, sense of pleasure upon gaining rewards, and overall boredom
levels, using an interactive slider.

Interventions

The full content of the goal-setting and control interventions (described in the main text) is
available here.

Participants
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The initial (discovery) sample consisted of N=100 participants (N=0 excluded from behavioural
data analysis), and the replication sample consisted of N=102 participants (N=0 excluded).
A total of N=5 participants were excluded from analyses that included self-report data, for
providing improbable answers to infrequency (catch) items.

Initial statistical analysis

Preliminary statistical analysis of choice behaviour was a via mixed-effects logistic regression
model, as implemented in lme4 (Bates et al., 2015). Individual choices were categorized as to
whether or not the higher effort/higher reward option was chosen on each trial, and modelled
as

choice ∼ interventionCondition ∗ taskNo + trialNo + (1|subID) (1)

Where appropriate, pairwise differences were assessed using follow-up t-tests using the Tukey
adjustment for multiple comparisons, as implemented in the R package emmeans.

Hierarchical Bayesian analysis

The most parsimonious model of choice behaviour, taking into account parameter recovery from
the optimized task design and model comparison results in pilot datasets (see above), was a
simple linear model with two free participant-level parameters representing reward and effort
sensitivity.

Vi,s,t = rewSenss ∗ rewardi,s,t − effSenss ∗ efforti,s,t (2)

where V is the value of each choice option (i) for each trial (t) and session (s; time 1 or time 2),
based on the reward offered (reward), required effort (effort) and participant reward (rewSens)
and effort sensitivity (effSens) parameters for that time point. As described above, we assumed
that task parameters across time points (pre- vs post-intervention) were drawn from multivariate
normal distributions.

[
rewSens1

rewSens2

]
∼ MVNormal

([
rewSensµ,1

rewSensµ,2

]
, σrewSens

)
[
effSens1

effSens2

]
∼ MVNormal

([
effSensµ,1

effSensµ,2

]
, σeffSens

) (3)

where effSensµ,s and rewSensµ,s are the group-level means for each parameter and time-point,
and σ is the covariance between individual-level parameters across time-points (prior correlation
between time-points was set to be uniform over [-1,1], using an LKJ(1) prior). Choice values
(Vi,s,t) were assumed to map onto observed choice data (y) using a simple Bernoulli likelihood
function.

yp,s,t ∼ Bern(logit(V2,s,t − V1,s,t)) (4)
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Participant-level parameter estimates were constructed using non-centered reparameterization
in order to separate the hierarchical parameters and lower-level parameters in the prior (Pa-
paspiliopoulos et al., 2007). For each parameter (e.g., ϕ) and time point s, participant-level
estimates (ϕp,s) were constructed from a group mean (ϕµ,s) and an individual offset (ϕ̃p,s). The
between-subjects effects of intervention group were then modelled as:

ϕp,1 = ϕµ,1 + ϕ̃p,1

ϕp,2 =

{
ϕµ,2 + ϕ̃p,2 + ϕINT , if active intervention
ϕµ,2 + ϕ̃p,2, otherwise

(5)

where ϕINT is a group-level parameter describing potential effects of allocation to the active
intervention on parameter estimates at time 2. For all models, the priors for effects of active
intervention on parameter estimates were centered on 0 (ϕINT ∼ N(0, 1)). For full details of
parameter constraints and model priors see Supplementary Methods.

CAUSAL ATTRIBUTION STUDIES

Causal attribution task

Code for implementing the task and a link to a demo version is available here. The task was
coded in javascript using the jsPsych library, version 7.2.1 (de Leeuw, 2015).

Participants were instructed that during the task they would be asked to imagine themselves
in various everyday situations. For each situation, they were asked to picture the situation
described as clearly as they could (“as if the events were happening to them right now”), and then
choose which of several possible explanations listed below they thought most likely. Specifically,
participants were informed that, although events can have multiple different causes, they should
choose the explanation they thought closest to the main reason the event happened, if it had
actually happened to them.

Participants were presented with 32 event scenarios (16 positive and 16 negative events, ran-
domly interleaved), divided into two blocks. Event scenarios were based on analysis of the pre-
vious literature (Alloy et al., 2000; Kinderman and Bentall, 1996; Wisco and Nolen-Hoeksema,
2010) and drawn from interpersonal (e.g., ”Someone you are close to tells you that they admire
you”), professional/academic (“You and your friends do a general knowledge quiz and you get
the lowest score”), and general life-functioning domains (“You fix something around the house
that you have been meaning to get done for a while”). For each event, participants were asked to
choose between four response options that varied orthogonally in terms of internal-external and
global-specific explanation types, derived from examples provided in (Abramson et al., 1978).
For example, for the event ”You find out that someone you consider a friend has talked about
you negatively behind your back”, possible explanations were ”Deep down, my friends don’t
really like me” (internal-global), ”I probably did something recently to annoy them” (internal-
specific), ”Everyone has bad things said about them sometimes” (external-global), and ”My friend
was probably just in a bad mood and letting off steam” (external-specific). We chose to focus on
these two attribution dimensions as these have been most reliably linked in the past to low mood
symptoms (Mezulis et al., 2004; Pearson et al., 2015). Full details of scenarios by event type
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(valence; interpersonal/not), category (close relationship/friends/contemporaries/colleagues;
general performance-professional/general performance-academic; general life functioning), and
possible attributions are available here.

Event scenarios for the final task version were chosen on the basis of analysis of a fuller (128)
item set during pilot testing. Specifically, responses to the full item set were collected in N=100
participants, and the data modelled using Item-Response Theory. Subsets of items with the
highest discriminability parameters for latent tendencies to make internal and global attribu-
tions for positive and negative events were then derived, ensuring final item sets with balanced
positive/negative event frequencies and that all items contribute meaningfully to trait parame-
ter estimates (posterior mean discriminability >1). We further conducted internal consistency,
split-half analysis of attribution type counts, and test-retest reliability analysis of our trait pa-
rameter estimates, in order to ensure consistent responding across event types and over time
(see main text and Supplementary Results). Given the novelty of this task, we also sought to
validate the derived measures by relating them to negative self-beliefs as measured by the DAS,
and current levels of depression and social anxiety symptoms (Supplementary Results). Finally,
given the likelihood that responses to realistic social/professional scenarios might be influenced
by individual and social factors, we examined if trait parameter estimates varied substantially
according to various relevant measures (e.g., age, functional disability, minoritized status; see
Supplementary Results).

The final item set did not include catch trials, but we applied the following exclusion rules to
participants’ choice data: median response time was required to be >2s, and proportionate
choice of each response option position (e.g., top-left) was required to be <75% (participants
were aware of these rules prior to completing the task, and informed that their compensation for
taking part in the study may depend on these rules; different response options were displayed
randomly in each position on each trial).

Interventions

Taking inspiration from materials described in Yeager et al. (2022), both active and control in-
terventions were in the form of a series of interactive worksheets, requiring participants to select
answers from multiple potential options during worked examples, and provide input based on
recent positive and negative experiences from their own lives. The full content of the cognitive
restructuring and control interventions (described in the main text) is available here.

Participants

The initial (discovery) sample consisted of N=100 participants, and the replication sample of
N=100 participants (0 were excluded from either sample based on task data according to the
above criteria). Across these samples, no participants additionally were excluded from analyses
including self-report data.

Initial statistical analysis

Preliminary statistical analysis of choice behaviour was via mixed-effects logistic regression mod-
els. Individual choices on each trial were categorized according to whether an internal (vs exter-
nal), and global (vs specific) attribution was selected, and the two orthogonal choice dimensions
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were separately modelled as:

choiceinternal ∼ interventionCondition ∗ itemV alence ∗ taskNo+ (1|subID) (6)

choiceglobal ∼ interventionCondition ∗ itemV alence ∗ taskNo+ (1|subID) (7)

Hierarchical Bayesian analysis

For analysis of causal attribution task data, we used a simple model based on single-parameter
IRT model to infer parameters governing a tendency to make internal and global attributions,
based on a non-linear analysis of the pattern of responses across trials. Given evidence of
valence-related asymmetry in attribution tendencies in both our data and the wider literature
(see Supplementary Results, main text), separate parameters were used to describe internal and
global attribution tendencies for positive and negative events. Specifically, participants’ choices
on each trial were coded along two dimensions, according to whether an internal (vs exter-
nal) or global (vs specific) response option was chosen (y internal and y global, respectively),
with the resulting data analysed within a single hierarchical model with 4 free participant-level
parameters.

y internalp,s,v ∼ Bern(θinternal,p,s,v)

y globalp,s,v ∼ Bern(θglobal,p,s,v)
(8)

where θinternal,p,s,v and θglobal,p,s,v represent the latent traits governing a participant (p)’s ten-
dency to make an internal or global attribution at that time point or session (s), separately for
positively and negatively valenced (v) event scenarios. We chose this simple model as it maps
intuitively onto concepts from attributional style theory (Abramson et al., 1978), on evidence
that it accounted well for participants’ choices in pilot data, and on the basis that final task items
were chosen based on a more complex 2PL IRT analysis of a larger item set, in order to ensure
good discriminability for our traits of interest (see Supplementary Results).

Given pilot data showing correlations between individuals’ tendencies to make global and in-
ternal attributions for positive and negative events (Supplementary Results, Figure S7), and in
order to allow maximum information to contribute to individual parameter estimates, we also
assumed that individual tendencies to make internal and global attributions for each type of
event were drawn from a multivariate normal distribution (allowing for direct estimation of
covariance between attribution types within each session).


θinternal,1,neg

θglobal,1,neg

θinternal,2,neg

θglobal,2,neg

 ∼ MVNormal



θinternal,µ,1,neg

θglobal,µ,1,neg

θinternal,µ,2,neg

θglobal,µ,2,neg

 , σθ,neg



θinternal,1,pos

θglobal,1,pos

θinternal,2,pos

θglobal,2,pos

 ∼ MVNormal



θinternal,µ,1,pos

θglobal,µ,1,pos

θinternal,µ,2,pos

θglobal,µ,2,pos

 , σθ,pos


(9)
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where θinternal,µ,s,v and θinternal,µ,s,v are the group-level means for each parameter and time-
point (modelled separately for positive, pos, and negative, neg, events), and σ is the covariance
between individual-level parameters across attribution types and time points. For full descrip-
tions of parameter constrains and model priors see Supplementary Methods.

Effects of belonging to the active intervention condition on parameter estimates at time 2 were
modelled as described in Equation 5.

CROSSOVER STUDY

For the crossover study, participants were randomly assigned to experimental conditions in a 2*2
factorial design of task (reward-effort decision-making or causal attribution) and intervention
(goal-setting or cognitive restructuring) condition. Tasks and intervention materials were as
described previously.

Analysis was via the same hierarchical models of each task as described above, with the effect
of active intervention at time 2 now representing the effect of allocation to the goal-setting vs
cognitive restructuring intervention on task measures, rather than either intervention alone vs a
well-matched control.

Participants

N=400 total participants were recruited for the crossover study. N=192 were randomized to
complete the reward-effort decision-making task, with N=5 excluded from behaviour-only anal-
yses on the basis of catch trial performance. N=208 were randomized to the causal attribution
task, with no participants excluded from behavioural analyses. A further N=5 participants were
excluded from analyses that included self-report data, on the basis of response to infrequency
items.

HETEROGENEITY OF TREATMENT EFFECTS ANALYSIS

Before examining individual differences related to magnitude of intervention effects, we first
sought to determine if we had evidence across samples of significant individual differences in
responses to active compared to control interventions (Hopkins, 2015; Norbury and Seymour,
2018). This analysis involves comparing standard deviations of change scores in the active
and control groups, in order to assess evidence for greater variance in outcomes in the active
intervention group (since we assume control arm change score variance represents effects of
individual variability over time and measurement error).

Change scores were defined as differences in mean posterior parameter estimate between time
points, and change scores in each arm were standardized by the SD of baseline (pre-treatment)
posterior means. The standard deviations of individual responses to the active treatment were
then calculated as SDIR =

√
SDAct

2 − SDCon
2; where SDAct and SDCon are the standardized

standard deviations of the change scores in the active and control groups, respectively. Confi-
dence limits for SDIR were obtained by assuming its sampling variance is normally distributed,

SDIRse =
√
2 ∗ (SDAct

4/DFAct + SDCon
4/DFCon), such that the 95% CI was calculated as

SDIR ± 1.96 ∗SDIRse. DFAct and DFCon are the degrees of freedom of the standard deviations
in the two groups (N−1). Where standardized SDs are used, 0.1, 0.3, 0.6, represent thresholds
for small, moderate, and large individual response effects.
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JOINT MODELLING OF SELF-REPORT AND TASK DATA

Self-reported symptom data model

Behavioural amotivation trait estimates were constructed from the 6 AMI behavioural amotiva-
tion subscale items plus the PHQ9 items “little interest or pleasure in doing things” and “feeling
tired or having little energy”. Negative cognition estimates were constructed from the 8 DAS
short-form items plus the PHQ9 items “feeling down, depressed, or hopeless” and “feeling bad
about yourself or that you are a failure” (Figure 6a,b).

In order to construct individual trait estimates, self-report data were analysed via a Graded
Response Model (GRM) (Samejima, 1969) – a form of IRT model that was developed to make
use of ordinal responses such as ordered Likert scales (essentially, an ordered logistic extension
of the model described in Equation S1). Given our relatively limited N (∼200 per sample),
we allowed items to contribute to their hypothetical latent trait only (i.e., we fit two parallel
unidimensional GRMs, rather than a more complex multidimensional GRM). This process yields
approximately normally distributed latent trait estimates.

Combining self-report and task behaviour data

Joint modelling allows maximum use of participant-level data, whilst retaining information
about uncertainty or precision of each kind of measurement (Turner et al., 2017; Haines et al.,
2020a; Haines, 2021; Hopkins et al., 2021).

For the joint model, individual estimates for trait amotivation (θA) and/or trait negative cogni-
tion (θN ; constructed as above), were allowed to influence the effect of intervention on time 2
parameter estimates (ϕINT ) found to show evidence of heterogeneous individual responses via
the inclusion of additional β weight parameters (βINT ; see Haines et al. 2020a; Hopkins et al.
2021) for previous examples of this approach). These β weights can interpreted similarly as in
a standard regression model, with the group-level intervention effect (ϕINT ) now representing
the intercept (see below).

In order to account for potential regression-to-the-mean effects caused by baseline associations
between task performance and self-reported clinical symptoms (see e.g., Figure S7), joint models
also included β weights for the same parameter estimate at time 1 (βBASE).

ϕp,1 = ϕµ,1 + ϕ̃p,1 + βBASEθA/N

ϕp,2 =

{
ϕµ,2 + ϕ̃p,2 + ϕINT + βINT θA/N , if active intervention
ϕµ,2 + ϕ̃p,2, otherwise

(10)

Posterior estimates for β weights with a 90% credible interval that excluded zero were taken as
evidence that the trait estimates were meaningfully related to the effect of interest.
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Lundgren, J., Milgrom, J., Gemmill, A. W., Mohr, D. C., Montero-Marin, J., Garcia-Campayo,
J., Nobis, S., Zarski, A.-C., O’Moore, K., Williams, A. D., Newby, J. M., Perini, S., Phillips,
R., Schneider, J., Pots, W., Pugh, N. E., Richards, D., Rosso, I. M., Rauch, S. L., Sheeber,
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SUPPLEMENTARY METHODS

HIERARCHICAL BAYESIAN MODELLING OF REWARD-EFFORT DECISION-MAKING TASK DATA

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
Cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
(effort and reward sensitivity) were also specified using standard normal distributions (ϕ̃p,s ∼
N(0, 1)). The prior over the correlation matrix relating parameter estimates across sessions was
set to be uniform over [−1, 1] using an LKJ(1) prior.

The priors for group-level effects of intervention on parameter estimates at time 2 (ϕINT ), and
group-level beta weights governing influence of latent traits on effects of interest (βINT , βBASE),
were also specified as standard normal distributions (i.e., centred on zero).

Individual parameter estimates for effort and reward sensitivity were constrained to be positive
and constrained to be in the range [0, 10] and [0, 3], respectively, on the basis of empirical poste-
rior distributions observed in pilot data and values considered to observable based on the range
of effort and reward values in our test trial array (this explains the plateauing of inferred values
outside this range in simulation-based calibration analysis; Figure 1d).

HIERARCHICAL BAYESIAN MODELLING OF CAUSAL ATTRIBUTION TASK DATA

Priors for group-level parameter means were specified using standard normal distributions,
ϕµ,s ∼ N(0, 1). Priors for group-level parameter standard deviations were specified as ϕσ,s ∼
cauchy(0, 1). Priors for individual participant deviations from group-level parameter estimates
(θinternal,p,s,neg, θinternal,p,s,pos, θglobal,p,s,neg, θglobal,p,s,pos) were also specified using standard nor-
mal distributions (ϕ̃p,s ∼ N(0, 1)). The prior over the correlation matrix relating parameter
estimates across sessions was set to be uniform over [−1, 1] using an LKJ(1) prior.

The priors for group-level effects of intervention on parameter estimates at time 2 (ϕINT ), and
group-level beta weights governing influence of latent traits on effects of interest (βINT , βBASE),
were also specified as standard normal distributions (i.e., centred on zero).

Individual parameter estimates for latent traits governing tendency to attribute positive and
negative events to internal and global causes were unconstrained but passed to the Bernoulli
observation function (Equation 8) using an inverse logit transform, scaling probability of en-
dorsement to the range [0, 1] (see e.g., Figure 1de).
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SUPPLEMENTARY RESULTS

LINEAR MIXED-EFFECTS ANALYSIS OF TASK BEHAVIOUR

Effects of planning/goal-setting on reward-effort choice behaviour. Choice of higher-effort/
higher-reward options on each trial were analysed via linear mixed-effects models, with the
within-subjects factors of time (pre vs post intervention) and trial number, and between-subjects
factor of intervention group (planning vs control). In both initial and replication samples, there
was a significant group*time interaction (F1,8697 = 15.4;F1,8871 = 34.8; both p < 0.001; Fig-
ure S4a,b). Follow-up pairwise comparisons with Tukey correction for multiple comparisons
revealed that in the initial sample, this was due to a decrease in high-effort/high-reward choice
options from time 1 to time 2 in the control (t8967 = −3.96, p < 0.001), but not the planning
intervention group (t8967 = 1.20, p > 0.5). In the replication sample, this was due to a decrease
in higher effort choices from time 1 to time 2 in the control group (t8871 = −3.77, p < 0.001),
but increase in higher effort choices in the planning group (t8871 = 4.57, p < 0.001).

Effects of planning/goal-setting on self-reported sense of achievement, pleasure, and bore-
dom during the reward-effort decision-making task. Participants were asked to rate their
sense of achievement on successful effort exertion, pleasure on gaining rewards, and boredom
levels, following each four blocks of the task. Ratings data were analysed via linear mixed-effects
models, with the within-subjects factors of time (pre vs post intervention) and block number, and
between-subjects factor of intervention group (planning vs control). In both initial and replica-
tion samples, there were significant group*time interaction effects on sense of achievement
(F1,679 = 59.3, F1,700 = 34.0), pleasure on gaining rewards (F1,679 = 58.8, F1,700 = 62.3), and
boredom (F1,679 = 102.0, F1,700 = 14.9; all p < 0.001; Figure S4c,d). Follow-up pairwise com-
parisons with Tukey correction for multiple comparisons revealed that in the initial sample, this
was due to higher sense of achievement, higher pleasure on reward receipt, and lower boredom,
at time 2 in the planning vs control group (t108 = 3.35, t108 = 3.82, t103 = −3.75; all p < 0.01).
In the replication sample, this was due to higher sense of achievement and pleasure on reward
receipt, at time 2 in the planning group (t111 = 2.98, t110 = 2.91; p < 0.03), and smaller increase
in self-reported boredom at time 2 in the planning vs control group (t700 = 10.5, t700 = 4.84;
both p < 0.001).

Goal-setting behaviour in planning intervention participants. Post-intervention, prior to
each block of the task, participants in the planning intervention were asked to set an achievable
goal for the amount of reward they would like to earn within that block. Participants in the
control condition were asked to enter a liking rating for different kinds of online games. Partic-
ipants in the planning condition tended to exceed their goals for each block (achieved > goal
reward; Figure S5a,b). Analysis of ratings data via repeated-measures ANOVA with the within-
subjects factor of block and between-subjects factor of intervention group revealed that in both
initial and replication samples there was a significant interaction between intervention group
and block number on answers (F2.4,236 = 19, F2.5,245 = 8.9; p < 0.001). Specifically, participants
in the planning group increased the ambitiousness of their goals across blocks (difference be-
tween first and last blocks: t59 = 3.70, t50 = 3.14; p < 0.01), whereas participants in the control
group did not show a systematic effect of block on liking ratings (difference between first and
last block: t41 = −2.78, t52 = −1.84, p < 0.07; Figure S5a,b).

Effects of psychoeducation/reappraisal practice on attribution choice. Choices of internal
(vs external) and global (vs specific) explanations for each scenario with analysed via linear
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mixed-effects models with the within-subjects factors of scenario valence (positive or negative
events) and time (pre vs post intervention), and the within-subjects factor of intervention group
(psychoeducation vs control). In both initial discovery and replication samples, there were found
to be significant interactions between time, item valence, and intervention group on frequency
of internal attributions (F1,6294 = 10.9, F1,6294 = 5.0; both p < 0.03, Figure S6). Follow-up
pairwise comparisons with Tukey correction for multiple comparisons revealed that this was
due to a decrease in internal attribution of negative events between time 1 and time 2 in the
psychoeducation group (t6294 = −7.3, t6294 = 6.0, p < 0.001), but not control group (t6294 =
−2.7, t6294 = 3.0, p > 0.05). Conversely, both groups showed increased frequency of internal
attributions for positive events at time 2 (psychoeducation group: t6294 = 7.5, t6294 = 6.6;
control group: t6294 = 5.6, t6294 = 6.5; all p < 0.001). There was evidence of an interaction
between time, item valence, and intervention group on frequency of choice of global attributions
in the initial discovery (F1,6294 = 6.1, p = 0.014), but not the replication sample (F1,6294 =
0.6, p > 0.4).

HIERARCHICAL BAYESIAN MODEL-BASED ANALYSIS OF TASK BEHAVIOUR

Descriptions of posterior group-level parameter estimates and relevant sampling diagnostics
for analyses presented in Figures 2-5 are listed in Tables S2-5. For each parameter, tables de-
scribe the posterior mean, standard error of the posterior mean, and 90% posterior probability
quantiles. In accordance with recommendations for reporting of Bayesian analyses, tables also
include the effective sample size for each parameter (an estimate of the number of independent
draws from the posterior distribution of that parameter) and R̂ (Gelman-Rubin) statistics, which
index convergence across different sampling chains.

IRT-MODELLING OF SELF-REPORT DATA

Posterior discriminability parameters (the IRT parameter describing how well each item differ-
entiates between individuals high and low on latent trait scores) for each sample are depicted in
Figure 6a,b. For the ‘amotivation’ trait, the top-discriminating items across all samples were PH9
1,4 (“little interest or pleasure in doing things”; “feeling tired or having little energy”), and AMI
5,10 (“I make decisions firmly and without hesitation”; “I don’t like to laze around”; both reverse-
scored). For the ‘negative cognition’ trait, there was more variance in the top-discriminating
items across samples, as many items had similar posterior discriminability estimates. Top items
across samples were mainly from the DAS scale, and included DAS 1,4,5 (“If I don’t set the high-
est standards for myself, I am likely to end up a second-rate person”, “I am nothing if a person I love
doesn’t love me”, “If other people know what you are really like, they will think less of you”).

DEVELOPMENT AND VALIDATION OF THE CAUSAL ATTRIBUTION TASK

Due to our use of a novel scenario battery and response option structure, extensive pilot work
was carried out during the development of the causal attribution task. Specifically, data from
an initial pilot sample (N=102) was initially collected on the full set of items (128 total). In
order to assess if we were able to consistently measure tendency to attribute events to nega-
tive and positive events to internal and global causes, data were first analysed using a simple
subscores approach from classical test theory. This involved summing counts of internal and
global attributions across items (64 positive, 64 negative), and then adjusting sums using the
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approach described in (Haberman, 2008), which accounts for the existence of measurement er-
ror in observations, using the R package subscore. The split-half reliability for each subscore
was then calculated across N=1000 random splits of the data, to generate average split-half cor-
relation scores, using the R package multicon. Internal reliability statistics (Cronbach’s α) were
also calculated for each score, for comparison with traditional questionnaire-based measures of
attributional style (Figure S7a).

Within-individuals, we observed that internal attributions for positive and negative events tended
to be moderately negatively correlated (R=-0.26, Figure S7b), supporting the interpretation
that individuals may vary in their tendency to express self-protective bias (i.e., heightened inter-
nal attribution of positive events, coupled with lower internal attribution of negative events). In
the global-specific domain, there was a weak positive correlation between tendency to globally
attribute positive and negative events (R=0.16, suggesting a more general preference for global
vs specific explanations.

External validation via association with clinical scores (the 2-item version of the PHQ9, the
PHQ2 (Kroenke et al., 2003), DAS, and miniSPIN total scores). We observed moderate correla-
tions between tendency to attribute negative events to internal causes and negative self-belief
(DAS) and depressed mood (PHQ2) scores (Rs=0.26-0.35). Relationships with internal attri-
butions of positive events and in the global domain tended to be small and weak - although
there was some evidence that participants higher in social anxiety (miniSPIN) scores tended to
attribute positive events to internal causes less often, and negative events to global causes more
often (Figure S7c,d).

The two equivalent 32-item versions of the task were then developed from using 2PL IRT mod-
elling of the full test set. Specifically,

P (X = 1 | θp, αi, βi) = expαi(θpβi) /(1 + expαi(θpβi)) (S1)

where P (X = 1) represents the probability of choosing a global or internal attribution for each
item i (modelled separately for positive and negative events), α is the discriminability parameter
(governing how well each item differentiates between individuals high or low on the latent trait
of interest), β is the difficulty parameter (governing how high an individual must be on the
latent trait in order to positively endorse the item), and θ is the participant (p)-level latent
trait estimate (here, ’globality’ and ’internality’ for positive and negative events, respectively).
Intuitively, the above equation describes a logistic function relating trait estimates to probability
of endorsement of each item, with α values governing the slope of the function, and β values its
left-right translation.

After fitting the 2PL model to the full item set, items were ranked in terms of their posterior
discriminability estimates for trait internality and globality (separately for positive and negative
events), and the top-ranked items alternately assigned to form two equivalent test sets, such that
they both consisted of 16 negative and 16 positive items. All posterior mean discriminability es-
timates for included items exceeded 1 (i.e., we had evidence that they meaningfully contributed
to the construction of trait estimates).

Finally, simulation-based calibration analysis of the 32-item versions and associated inference
model was then carried out, and observed test-retest reliability of task parameters from the two
versions was formally assessed (see main text).
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SUPPLEMENTARY FIGURES

Figure S1: Graphical summary of simulation-based calibration analysis of data genera-
tion and model fit procedures for both tasks. a Reward-effort decision-making task. effSens,
effort sensitivity parameter; rewSens, reward sensitivity parameter. b Causal-attribution task.
theta neg, parameter governing latent tendency to make internal/global attributions of nega-
tive events; theta pos, parameter governing latent tendency to make internal/global attributions
of positive events. Plots in each panel are rank histograms (check for uniformity of posterior
draw ranks; horizontal black line=expected average count, blue trapezoid=approximate 95%
interval for expected deviations), (E)CDF, (empirical) cumulative distribution functions (blue
ellipse=region outlining expected 95% deviations; top-right plots show are rotated by 45° for
easier visualisation of deviations), and coverage plots (which show the proportion of true vari-
able values that fall within the 95% posterior credible intervals for each parameter).
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Figure S2: Parameter estimates according to age and other sociodemographic informa-
tion, in pilot data samples. a Posterior mean effort and reward sensitivity estimates by age
in years, for the reward-effort decision-making task test-retest reliability sample (N=72). b
Posterior mean effort and reward sensitivity estimates by sex, for the reward-effort decision-
making task. c Posterior parameter estimates by age, for the causal attribution task test-retest
reliability sample (N=88). p global neg/pos, probability of attributing a negative/positive event
to a global cause; p internal neg/pos, probability of attributing a negative/positive event to an
internal cause. d Posterior parameter estimates for the causal attribution task by gender iden-
tity (man, or woman/non-binary/other), minoritized group status (identifying as belonging to
a group that may lead to greater risk of being discriminated against or experiencing prejudice
in social or professional situations), and functional disability or neurodivergence (disability or
form of neurodivergence that affects ability to concentrate for extended periods of time, perform
physically effortful activities, read/write/do maths, deal with people you don’t know, or other
form or impact on psychosocial functioning).
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Figure S3: Self-reported psychological symptom scores for study participants. a Reward-
effort decision-making initial discovery sample. b Reward-effort decision-making replication
sample. c Causal attribution task initial discovery sample. d Causal attribution task replication
sample. e Crossover study participants who completed the reward-effort decision-making task. f
Crossover study participants who completed the causal attribution task. PHQ9 total, Physician’s
Health Questionnaire 9-item measure of depressed mood total score. AMI: behavioural, Apathy
Motivational Index behavioural amotivation subscale score. miniSPIN total, mini Social Phobia
Inventory total score. DAS-SF total, Dysfunctional Attitude Scale short-form total score. Black
dotted lines represent previously-published cut-off scores for clinically-significant levels of symp-
toms. For the DAS-SF, where no such cut-off score is available, grey dotted lines represent mean
scores in previously-published samples of depressed in-patients. Participants were also asked if
they had ever previously received treatment (tx) for a mental health problem (see Table S1).PREPRINT 41



Figure S4: Choice data and self-report ratings from the reward-effort decision-making task.
a Proportionate choice of higher effort/higher reward options by difference in required effort
level between choices (delta effort), pre- and post-intervention (taskNo 1, taskNo 2), by inter-
vention condition, in the initial discovery sample. b The same data as in (a), in the replication
sample. c Self-reported ratings data collected after each block of the task, by time and interven-
tion condition. Pleased with reward, “During the task, did you feel PLEASED when you collected
the coins?”; sense of achievement from successful effort, “During the task, did you feel A SENSE
OF ACHIEVEMENT when you collected the coins?”; boredom, “During the task, did you feel
BORED?”. d The same data as in (c), in the replication sample.
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Figure S5: Goal-setting and intervention reading time data for the reward-effort decision-
making task. a Goals for each block of the task (at time 2) for participants in the initial discovery
sample. Participants were invited to set a goal prior to completing each block, given the infor-
mation that the maximum available reward per block was 69 coins, if they chose the highest
effort option every time. For the control condition, answer values represent liking ratings for
different types of computer games. Coins represent the actual reward earned by participants
in that block. b The same information as (a), for the replication sample. c Left, proportion of
participants who provided the correct answer to the multiple-choice comprehension quiz, which
followed the intervention text (participants were allowed to return and re-read the text prior
to answering). Right, time spent reading the intervention text (a single screen of information),
in discovery sample participants. d The same information as in (c), for the replication sample
participants.
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Figure S6: Attribution choices and intervention time data for the causal attribution task.
a Proportionate choice of internal (vs external), and global (vs specific) attributions chosen for
positive and negative events pre- and post-intervention (task no 0, task no 1), in the initial
discovery sample. b The same data as in (a), for the replication sample. c Time spent on the
intervention in each condition in the initial discovery sample. d The same data as in (c), for the
replication sample participants.
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Figure S7: Details of split-half reliability, within-participant correlation structure, and rela-
tionship to clinical scores of simple subscores derived from the full causal attribution task
battery, during task development. a Split-half reliability and internal consistency estimates
for the full (128) item set in N=102 pilot study participants. Mean Split-Half r, the average
of all estimated split-half correlations; Rel, the average of all split-half reliabilities (equivalent
to Cronbach’s alpha); Rel SD, the standard deviation of all split-half reliabilities. b Correlation
matrix for within-participant variation in subscore estimates. c Bivariate relationships between
negative and positive internality subscores, and self-reported clinical symptoms. d Bivariate
relationships between negative and positive globality subscores, and self-reported clinical symp-
toms. DAS, Dysfunctional Attitudes Scale (short form). PHQ2, Patient Health Questionnaire
2-item measure of depressed mood, miniSPIN, 3-item mini Social Phobia Inventory.
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SUPPLEMENTARY TABLES
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Reward-
effort
sample 1

Reward-
effort
sample 2

Causal
attribution
sample 1

Causal
attribution
sample 2

Crossover
study
sample 1

Crossover
study
sample 2

N 100 102 100 100 197 208

Age (years)
mean (SD)
range

35.3 (11)
19-60

40.1 (11.6)
18-64

36 (9.5)
19-60

38.5 (11.4)
19-63

37.4 (12.8)
18-65

38.7 (12.3)
18-65

Gender
Woman
Man
Non-binary or other

77 (79%)
20 (20%)
1 (1%)

61 (60%)
40 (39%)
1 (1%)

66 (66%)
30 (30%)
4 (4%)

44 (44%)
56 (56%)
0 (0%)

99 (52%)
92 (48%)
1 (1%)

112 (54%)
94 (45%)
2 (1%)

Race/
ethnicity

White
Asian
Black
Mixed
Other

80 (82%)
5 (5%)
1 (1%)
7 (7%)
5 (5%)

87 (86%)
6 (6%)
4 (4%)
3 (3%)
1 (1%)

80 (80%)
7 (7%)
3 (3%)
4 (4%)
6 (6%)

85 (85%)
7 (7%)
2 (2%)
4 (4%)
2 (2%)

164 (85%)
15 (8%)
2 (1%)
7 (4%)
4 (2%)

165 (80%)
16 (8%)
11 (5%)
9 (4%)
7 (3 %)

Employment
status

Employed
Unemployed
Not seeking

64 (65%)
13 (13%)
21 (21%)

69 (68%)
11 (11%)
22 (22%)

79 (80%)
9 (9%)
11 (11%)

68 (68%)
10 (10%)
22 (22%)

142 (74%)
19 (10%)
31 (16%)

156 (75%)
18 (9%)
34 (16%)

Financial
status

Doing okay
Just about getting by
Struggling

52 (53%)
31 (32%)
15 (15%)

39 (38%)
43 (42%)
20 (20%)

46 (46%)
38 (38%)
15 (15%)

49 (49%)
36 (36%)
15 (15%)

91 (47%)
70 (37%)
31 (16%)

111 (53%)
74 (36%)
23 (11%)

Housing
status

Homeowner
Tenant
Other

44 (45%)
29 (30%)
25 (26%)

47 (46%)
39 (38%)
16 (16%)

42 (42%)
48 (48%)
9 (9%)

48 (48%)
38 (38%)
14 (14%)

85 (44%)
71 (37%)
36 (19%)

94 (45%)
77 (37%)
37 (18%)

Neurodivergence
Yes
No
Prefer not to say

19 (19%)
72 (73%)
7 (7%)

18 (18%)
80 (78%)
4 (4%)

15 (15%)
80 (81%)
5 (5%)

10 (10%)
87 (87%)
3 (3%)

37 (19%)
146 (76%)
9 (5%)

31 (15%)
172 (83%)
5 (2%)

Previous treatment
for a mental
health problem

Yes
No
Prefer not to say

49 (50%)
47 (48%)
2 (2%)

42 (41%)
58 (57%)
2 (2%)

52 (53%)
48 (48%)
0 (0%)

37 (37%)
55 (55%)
8 (8%)

97 (51%)
93 (48%)
1 (1%)

76 (37%)
128 (62%)
4 (2%)

If yes,
type of treatment
(all that apply)

Talking therapy
Medication
Self-guided
Other

38 (39%)
35 (36%)
23 (23%)
7 (7%)

31 (30%)
29 (28%)
20 (20%)
2 (2%)

36 (36%)
35 (35%)
21 (21%)
4 (4%)

26 (26%)
27 (27%)
18 (18%)
1 (1%)

72 (38%)
70 (37%)
38 (20%)
9 (5%)

57 (27%)
51 (25%)
32 (15%)
6 (3%)

PHQ9 total mean (SD) 9.1 (6.7) 7.6 (6) 7.7 (6.1) 6.9 (6.3) 7.4 (6.1) 6.7 (5.6)
AMI behaviour mean (SD) 1.8 (0.8) 1.8 (0.8) - - 1.6 (0.7) 1.6 (0.8)
DAS-SF total mean (SD) - - 19.1 (4.5) 19.3 (4.8) 19.4 (5) 19.1 (4.8)
miniSPIN total mean (SD) 7.2 (3.3) 7 (3.2) 6.1 (3.3) 5.4 (3.8) 5.7 (3.3) 5.6 (3.5)

Table S1: Self-reported demographic and clinical data for all study participants. For reward-
effort decision-making and causal attribution studies, samples 1 and 2 represent the initial
discovery and replication samples, respectively. For the crossover study, sample 1 represents
individuals who were randomized to the reward-effort decision-making task, and sample 2 rep-
resents individuals who were randomized to the causal attribution task. Response categories
for employment, financial, and housing status were based on those described in (Buckman et
al. 2022). Employment status categories were employed (including full-time and part-time
employment), unemployed (job seekers and those unemployed owing to ill health), and not
seeking employment (stay-at-home parents, students, and retirees). Housing status categories
were homeowner (including those with a mortgage), tenant, and other (living with family or
friends, homeless, or living in a hostel). Neurodivergence was defined as “a term for when
someone processes or learns information in a different way to that which is considered ’typical’:
common examples include autism and ADHD”. Categories for previous mental health treatment
were talking therapy (including cognitive-behavioural therapies), medication, self-guided (e.g.,
workbooks or apps), or other. PHQ9 total, Physician’s Health Questionnaire 9-item measure
of depressed mood total score (possible range 0-27). AMI: behavioural, Apathy Motivational
Index behavioural amotivation subscale score (possible range 0-4, mean score across 6 items).
miniSPIN total, mini Social Phobia Inventory total score (possible range 0-12). DAS-SF total,
Dysfunctional Attitude Scale short-form total score (possible range 9-36). -, questionnaire not
administered in this sample.
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mean se (mean) sd 5% 95% Neff R̂

Initial discovery sample
Mean effort sensitivity
at time 1

-0.9986 0.0052 0.1613 -1.2775 -0.7487 980 1.0039

Mean effort sensitivity
at time 2

-0.9577 0.0048 0.1878 -1.2807 -0.6716 1517 1.0003

Mean reward sensitivity
at time 1

0.0160 0.0069 0.1743 -0.2651 0.3002 640 1.0071

Mean reward sensitivity
at time 2

-0.2036 0.0160 0.4663 -0.9848 0.5750 844 1.0025

Effect of goal-setting on reward sensitivity
at time 2

0.2745 0.0149 0.5042 -0.5342 1.0980 1139 1.0035

Effect of goal-setting on effort sensitivity
at time 2

-0.5653 0.0051 0.2114 -0.9132 -0.2260 1693 1.0069

Replication sample
Mean effort sensitivity
at time 1

-1.1009 0.0052 0.1667 -1.3882 -0.8397 1014 1.0053

Mean effort sensitivity
at time 2

-1.1674 0.0052 0.1824 -1.4900 -0.8899 1221 1.0023

Mean reward sensitivity
at time 1

-0.0587 0.0066 0.1523 -0.3075 0.2044 533 1.0043

Mean reward sensitivity
at time 2

-0.0062 0.0124 0.3233 -0.5253 0.5475 681 1.0021

Effect of goal-setting on reward sensitivity
at time 2

0.5535 0.0087 0.3414 0.0163 1.1160 1540 1.0008

Effect of goal-setting on effort sensitivity
at time 2

-0.3192 0.0044 0.1972 -0.6519 -0.0044 2043 0.9993

Table S2: Hierarchical Bayesian model results for effect of goal-setting on reward-effort
decision-making. Mean, posterior mean; se (mean), standard error of the posterior mean. 5%,
95%, posterior probability quantiles for parameter estimates; Neff , effective sample size (an
estimate of the number of independent draws from the posterior distribution of the estimand of
interest); R̂, the ratio of the average variance of draws within each chain to the variance of the
pooled draws across chains (if all chains are at equilibrium, R̂ will be 1).
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mean se (mean) sd 5% 95% Neff R̂
Initial discovery sample
Mean θ for internal attributions
of negative events at time 1

-0.2243 0.0017 0.0811 -0.3574 -0.0880 2351 1.0006

Mean θ for internal attributions
of negative events at time 2

-0.4831 0.0028 0.1359 -0.7096 -0.2630 2288 1.0012

Mean θ for internal attributions
of positive events at time 1

1.1002 0.0018 0.0977 0.9430 1.2627 2893 1.0015

Mean θ for internal attributions
of positive events at time 2

2.2414 0.0054 0.2249 1.8854 2.6313 1762 1.0026

Mean θ for global attributions
of negative events at time 1

-0.5098 0.0012 0.0694 -0.6267 -0.3965 3498 0.9994

Mean θ for global attributions
of negative events at time 2

-0.6684 0.0018 0.1001 -0.8410 -0.5070 3170 0.9994

Mean θ for global attributions
of positive events at time 1

-0.0141 0.0020 0.0953 -0.1745 0.1414 2288 1.0003

Mean θ for global attributions
of positive events at time 2

0.7039 0.0054 0.2177 0.3506 1.0640 1650 1.0027

Effect of restructuring on
θ internal-negative at time 2

-0.5632 0.0035 0.1905 -0.8725 -0.2407 2956 1.0006

Effect of restructuring on
θ internal-positive at time 2

0.3848 0.0071 0.3037 -0.1143 0.8799 1836 1.0014

Effect of restructuring on
θ global-negative at time 2

0.0093 0.0023 0.1364 -0.2130 0.2369 3555 0.9996

Effect of restructuring on
θ global-positive at time 2

0.4723 0.0076 0.3028 -0.0352 0.9611 1572 1.0024

Replication sample
Mean θ for internal attributions
of negative events at time 1

-0.1987 0.0019 0.0854 -0.3399 -0.0562 2015 1.0024

Mean θ for internal attributions
of negative events at time 2

-0.5091 0.0023 0.1139 -0.6922 -0.3218 2405 1.0012

Mean θ for internal attributions
of positive events at time 1

0.9753 0.0022 0.0974 0.8163 1.1359 2041 1.0022

Mean θ for internal attributions
of positive events at time 2

2.2854 0.0046 0.2184 1.9407 2.6427 2230 1.0005

Mean θ for global attributions
of negative events at time 1

-0.6103 0.0014 0.0715 -0.7252 -0.4951 2675 1.0011

Mean θ for global attributions
of negative events at time 2

-0.7800 0.0014 0.0833 -0.9193 -0.6440 3585 1.0001

Mean θ for global attributions
of positive events at time 1

-0.0987 0.0017 0.0803 -0.2341 0.0339 2106 1.0010

Mean θ for global attributions
of positive events at time 2

0.4347 0.0046 0.1995 0.1084 0.7621 1888 1.0018

Effect of restructuring on
θ internal-negative at time 2

-0.3367 0.0034 0.1707 -0.6113 -0.0547 2501 1.0013

Effect of restructuring on
θ internal-positive at time 2

0.1488 0.0064 0.3008 -0.3397 0.6592 2180 0.9996

Effect of restructuring on
θ global-negative at time 2

0.2084 0.0022 0.1233 0.0064 0.4103 3271 1.0003

Effect of restructuring on
θ global-positive at time 2

0.4352 0.0061 0.2800 -0.0293 0.8978 2100 1.0015

Table S3: Hierarchical Bayesian model results for effect of cognitive restructuring on causal
attribution. Continued on next page.PREPRINT 49



Table S3: θ, parameters describing latent tendency to attribute events to different kinds of
causes. Mean, posterior mean; se (mean), standard error of the posterior mean. 5%, 95%,
posterior probability quantiles for parameter estimates; Neff , effective sample size; R̂, the ratio
of the average variance of draws within each chain to the variance of the pooled draws across
chains).

mean se (mean) sd 5% 95% Neff R̂
Reward-effort decision-making
task sample
Mean effort sensitivity
at time 1

-1.1340 0.0027 0.0996 -1.3037 -0.9842 1377 1.0014

Mean effort sensitivity
at time 2

-1.0799 0.0033 0.1282 -1.2949 -0.8817 1537 1.0006

Mean reward sensitivity
at time 1

-0.0451 0.0050 0.1189 -0.2339 0.1534 555 1.0080

Mean reward sensitivity
at time 2

0.3784 0.0091 0.2631 -0.0321 0.8264 838 1.0047

Effect of goal-setting on
reward sensitivity at time 2

-0.4231 0.0076 0.2704 -0.8800 0.0151 1266 1.0016

Effect of goal-setting on
effort sensitivity at time 2

-0.4108 0.0036 0.1528 -0.6628 -0.1628 1849 1.0018

Causal attribution task sample
Mean θ for internal attributions
of negative events at time 1

-0.2361 0.0013 0.0540 -0.3245 -0.1475 1633 1.0025

Mean θ for internal attributions
of negative events at time 2

-0.0111 0.0017 0.0750 -0.1358 0.1109 1970 1.0006

Mean θ for internal attributions
of positive events at time 1

0.9401 0.0015 0.0595 0.8439 1.0371 1631 1.0014

Mean θ for internal attributions
of positive events at time 2

0.9665 0.0028 0.1094 0.7857 1.1499 1476 1.0028

Mean θ for global attributions
of negative events at time 1

-0.4827 0.0011 0.0523 -0.5669 -0.3968 2373 0.9999

Mean θ for global attributions
of negative events at time 2

-0.4207 0.0017 0.0768 -0.5460 -0.2992 2135 1.0001

Mean θ for global attributions
of positive events at time 1

-0.1165 0.0012 0.0536 -0.2032 -0.0277 2136 1.0005

Mean θ for global attributions
of positive events at time 2

-0.3409 0.0020 0.0877 -0.4858 -0.1981 1888 0.9992

Effect of restructuring on
θ internal-negative at time 2

-0.2756 0.0019 0.0972 -0.4326 -0.1135 2723 1.0006

Effect of restructuring on
θ internal-positive at time 2

0.4595 0.0029 0.1435 0.2229 0.6963 2531 1.0008

Effect of restructuring on
θ global-negative at time 2

-0.1457 0.0019 0.1000 -0.3082 0.0210 2762 1.0016

Effect of restructuring on
θ global-positive at time 2

0.0650 0.0023 0.1149 -0.1266 0.2542 2519 0.9995

Table S4: Hierarchical Bayesian model results for effects of goal-setting vs restructuring
on reward-effort decision-making and causal attribution in the crossover study. Continued
on next page.
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Table S4: θ, parameters describing latent tendency to attribute events to different kinds of
causes. Mean, posterior mean; se (mean), standard error of the posterior mean. 5%, 95%,
posterior probability quantiles for parameter estimates; Neff , effective sample size; R̂, the ratio
of the average variance of draws within each chain to the variance of the pooled draws across
chains.

mean se (mean) sd 5% 95% Neff R̂
Reward-effort decision-making
initial + replication samples

Effect of goal-setting on reward sensitivity 0.4067 0.0092 0.2988 -0.0768 0.9058 1054 1.0000
Effect of goal-setting on effort sensitivity -0.3563 0.0038 0.1336 -0.5769 -0.1384 1227 1.0014
βa, baseline effort sensitivity 0.2443 0.0042 0.1180 0.0561 0.4396 804 1.0093
βa, effect of goal-setting on effort sensitivity -0.3655 0.0042 0.1380 -0.5971 -0.1540 1091 1.0040
Crossover study reward-effort
decision-making sample

Effect of goal-setting on reward sensitivity -0.4498 0.0083 0.2896 -0.9331 0.0218 1232 1.0012
Effect of goal-setting on effort sensitivity -0.3652 0.0070 0.2514 -0.7583 0.0414 1302 1.0000
βa, baseline effort sensitivity 0.1642 0.0063 0.1931 -0.1165 0.5088 953 1.0033
βn, baseline effort sensitivity -0.1455 0.0060 0.1703 -0.4428 0.1053 801 1.0032
βa, effect of goal-setting on effort sensitivity -0.1105 0.0088 0.3031 -0.6200 0.3687 1179 1.0016
βn, effect of goal-setting on effort sensitivity -0.0649 0.0075 0.2428 -0.4592 0.3222 1051 1.0071
Causal attribution task
initial + replication samples

Effect of restructuring on
θ internal-negative attributions

-0.4775 0.0030 0.1386 -0.7037 -0.2458 2098 1.0011

Effect of restructuring on
θ internal-positive attributions

0.3615 0.0071 0.2667 -0.0831 0.8057 1431 0.9999

Effect of restructuring on
θ global-negative attributions

0.0701 0.0016 0.0920 -0.0788 0.2204 3290 0.9994

Effect of restructuring on
θ global-positive attributions

0.4975 0.0057 0.2415 0.1015 0.8886 1819 0.9993

βn, baseline θ internal-positive -0.1610 0.0023 0.0780 -0.2922 -0.0352 1160 1.0023
βn, effect of restructuring
on θ internal-positive

-0.2383 0.0051 0.1905 -0.5541 0.0741 1414 1.0021

Crossover study
causal attribution sample

Effect of restructuring on
θ internal-negative attributions

-0.3085 0.0020 0.1015 -0.4761 -0.1464 2705 0.9997

Effect of restructuring on
θ internal-positive attributions

0.6469 0.0091 0.3081 0.1667 1.1676 1143 1.0039

Effect of restructuring on
θ global-negative attributions

-0.1575 0.0021 0.1059 -0.3295 0.0175 2458 1.0014

Effect of restructuring on
θ global-positive attributions

0.0665 0.0028 0.1236 -0.1402 0.2674 1950 1.0007

βa, baseline θ internal-positive -0.1788 0.0043 0.1406 -0.4306 0.0148 1066 1.0004
βn, baseline θ internal-positive -0.1968 0.0048 0.1435 -0.4554 0.0123 910 1.0021
βa, effect of restructuring
on θ internal-positive

-0.4500 0.0084 0.2902 -0.9711 -0.0382 1195 1.0014

βn, effect of restructuring
on θ internal-positive

0.0787 0.0081 0.2857 -0.3659 0.5529 1241 1.0026

Table S5: Hierarchical Bayesian model results for models taking into account individual
differences in self-reported behavioural amotivation and negative cognition. Continued on
next page.
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Table S5: βa, posterior weight for influence of behavioural amotivation on baseline or
intervention-induced change in parameter estimates; βn, posterior weight for influence of nega-
tive cognition on baseline or intervention-induced change in parameter estimates; θ, parameters
describing latent tendency to attribute events to different kinds of causes. Mean, posterior mean;
se (mean), standard error of the posterior mean. 5%, 95%, posterior probability quantiles for
parameter estimates; Neff , effective sample size; R̂, the ratio of the average variance of draws
within each chain to the variance of the pooled draws across chains.
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