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ABSTRACT
Identifying early neurocognitive mechanisms that confer risk for mental health problems is one important avenue as
we seek to develop successful early interventions. Currently, however, we have limited understanding of the neu-
rocognitive mechanisms involved in shaping mental health trajectories from childhood through young adulthood, and
this constrains our ability to develop effective clinical interventions. In particular, there is an urgent need to develop
more sensitive, reliable, and scalable measures of individual differences for use in developmental settings.
In this review, we outline methodological shortcomings that explain why widely used task-based measures of neu-
rocognition currently tell us little about mental health risk. We discuss specific challenges that arise when studying
neurocognitive mechanisms in developmental settings, and we share suggestions for overcoming them. We also
propose a novel experimental approach—which we refer to as “cognitive microscopy”—that involves adaptive design
optimization, temporally sensitive task administration, and multilevel modeling. This approach addresses some of the
methodological shortcomings outlined above and provides measures of stability, variability, and developmental
change in neurocognitive mechanisms within a multivariate framework.

https://doi.org/10.1016/j.bpsc.2023.03.011
Multiple developmental theories implicate the role of specific
neurocognitive mechanisms in the onset and maintenance of
mental health symptoms (1,2). Research has indicated that
neurocognitive difficulties in childhood and adolescence, such
as poor self-control, may represent transdiagnostic risk factors
for psychopathology (3,4). Therefore, a better understanding of
the relationships between neurocognitive mechanisms and
mental health across development is needed to develop
effective preventative interventions that can reduce that risk for
affected individuals, families, and societies.

Accurate measurement of neurocognitive mechanisms
entails the administration of task-based measures wherein
participants respond to stimuli that putatively engage the
mechanisms of interest. For example, in a Go/NoGo task,
participants must suppress responses to NoGo stimuli, and
making fewer errors on NoGo trials indicates better self-
control (5). Task-based measures designed to tap neuro-
cognitive mechanisms are widely used to study clinical and
at risk groups, but recent concerns regarding the psycho-
metric properties of these task-based measures and their
sensitivity to individual differences (6–8) have forced the field
to take stock of its methods. However, relatively little atten-
tion has been devoted to the implications of these concerns
for developmental research. If we cannot measure neuro-
cognitive mechanisms reliably and sensitively during devel-
opment, then we are limited in our ability to discern the
nature of mental health vulnerability and to develop early
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interventions that may prevent mental health symptoms from
emerging or escalating.

In this article, we review the challenges associated with
measuring neurocognitive mechanisms using task-based
measures and their implications for developmental research.
In addition to pointing out challenges, we suggest some
potentially fruitful avenues to advance the field. More specif-
ically, we propose triangulating methods that have been
proven successful individually or in research with adult pop-
ulations. We also explain how this approach may yield psy-
chometrically valid measurements of individual differences in
neurocognitive mechanisms relevant to mental health vulner-
ability. Here, we focus on behavioral measurements because
the proposed approach readily lends itself to behavioral
experimentation, including within large-scale data collection.
Nevertheless, the proposed approach may also find applica-
tion in neuroimaging research.

DIFFICULTIES IN USING CURRENT TASK-BASED
MEASURES TO STUDY INDIVIDUAL DIFFERENCES IN
NEUROCOGNITIVE MECHANISMS UNDERLYING
MENTAL HEALTH RISK

Improving our understanding of individual differences in neu-
rocognitive mechanisms during development is essential for
individual-level prediction of mental health outcomes in clinical
and evidentiary applied settings (9). For example, mental health
blished by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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professionals routinely develop personal treatment plans in the
absence of objective markers and models to aid them in pre-
dicting mental health trajectories and clinical outcomes (10,11).
Improved understanding of individual variability can also help
shift views of what it means to be at risk for mental health
problems—from a stable feature, or even a label, to a pro-
cessing style that characterizes some young people more
often than others, also depending on the context. Several
collaborative efforts have been made to improve our under-
standing of neurocognitive development and its relation to
mental health risk, such as the Adolescent Brain Cognitive
Development (ABCD) Study (12) and the Healthy Brain and
Child Development Study (13). These efforts have great po-
tential to provide information about normative neuro-
development as well as biological and environmental pathways
to mental ill health (14). Nonetheless, existing large-scale
datasets include task-based measures that vary in their psy-
chometric qualities (15), often administered months or years
apart. Therefore, the groundwork to develop task-based
measures that are sensitive to individual differences in neuro-
cognitive development is urgently needed and can help to
improve mental health diagnosis, treatment tailoring, and
outcome prediction (16).

Questionnaire measures (completed by parents, teachers,
or children themselves) typically outperform tasks in predicting
real-world outcomes (17,18). However, questionnaires are not
designed to—and hence are not able to—discern potentially
different underlying cognitive mechanisms that may lead to
similar behavioral profiles but may require different in-
terventions. For example, a questionnaire measuring conduct
disorder symptoms cannot be used to discern whether the
child displays aggression as an exaggerated response to
perceived threat, as a result of low tolerance for frustration, or
because the child does not respond to other people’s
expressed distress and is thus able to act aggressively to get
what they want. Knowing what information-processing differ-
ences underlie mental health symptoms is relevant for locating
the source of the child’s difficulty and formulating personalized
intervention targets (19,20). There are several reasons why
questionnaires outperform tasks in individual-level prediction.
Questionnaires are completed based on “priors” that stem
from accumulated data relating to each questionnaire item
(e.g., having “trouble relaxing”) over a particular period of time
(e.g., over the last 2 weeks) (21). This averaging over time, and
the implied emphasis on traits that are stable in the face of
diurnal, stress-induced, and other sources of variation, may
partly explain the ability of questionnaires to capture individual
differences reliably and sensitively (22,23). Moreover, the long
tradition of careful psychometric development of questionnaire
measures of mental health vulnerability has not been accom-
panied by comparable work on how to extract information on
individual differences from task-based measures (24). This is
understandable given that task-based measures have been
developed precisely to minimize between-subject variability
and capture aspects of cognitive function that are consistent
across individuals (25). While task-based measures perform
well when examining experimental (within-subject) and
between-group differences and have provided critical insight
into the general principles of human brain and cognitive
function, they are seldom optimized to sensitively discern
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individual differences in continuous trait analyses (26,27). For
example, titrating tasks (e.g., the stop-signal delay) is helpful to
detect group-level effects (e.g., in response inhibition), but it
hampers our ability to measure individual variation, which is
often larger than the variance between groups (28). Task-
based measures can provide information about individual dif-
ferences when additional analytical steps are implemented.
One approach that is frequently used is correlating task per-
formance with variance in questionnaire measures, but these
correlations tend to be modest (29–31). Furthermore, ques-
tionnaires and task-based measures of the same putative
underlying cognitive mechanisms may, in fact, assess distinct
constructs (26). This problem, which is widespread in cognitive
research, is referred to as the jingle-jangle fallacy (30), namely,
measures with the same name tapping different constructs
(jingle fallacy) and measures with different names tapping the
same construct (jangle fallacy). Low overlap between the same
putative constructs across measurement types limits our
ability to examine associations between neurocognitive
mechanisms and observed behavior (32,33).

CHALLENGES AND WAYS FORWARD FOR RELIABLE
TASK-BASED RESEARCH IN DEVELOPMENTAL
SETTINGS

We argue that some of the main concerns with the use of
current task-based measures for individual differences
research represent opportunities for research into neuro-
cognitive development.

First, a number of well-established task-based measures
have been found to display suboptimal psychometric proper-
ties, including poor test-retest reliability (6,7,25) and low in-
ternal consistency (7,34). For example, suboptimal test-retest
reliability has been observed in child and adolescent longitu-
dinal functional magnetic resonance imaging studies using
attentional, emotional, and cognitive control tasks, with lower
reliability of blood oxygen level–dependent signal in brain re-
gions subject to greater developmental change (15,35,36). The
problem of poor psychometric properties represents an op-
portunity to conduct targeted research to establish when low
reliability and internal consistency estimates reflect task
properties versus change in the underlying cognitive
mechanisms—including their state-dependent or dynamic
nature. The reliability and stability of measures over time is
most relevant in developmental settings because they may
reflect important dynamics of neurocognitive development. For
example, poor test-retest reliability of neuroimaging tasks
administered during developmentally sensitive periods may
result from brain activation patterns being less stable with
increasing interscan intervals, when individual differences in
brain development should be expected (37). Temporally sen-
sitive methods, like the one proposed below, offer ways to
disentangle different possible contributors to low reliability and
may thus lead to novel insights into neurocognitive mecha-
nisms across development.

Task-based measures also require that measurement noise
is accounted for to display reasonable psychometric proper-
ties, but this is seldom the case (10,12–14). Sources of mea-
surement error that can affect task reliability include, for
example, habituation and fatigue (38). In developmental
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settings, sources of measurement error also need to be
distinguished from change in the neurocognitive mechanisms
of interest. Indeed, change should be considered as intrinsic
and central to the scientific inquiry, rather than treated as a
nuisance parameter to control for, thereby removing its effect
on individual and group averages. Researchers measuring the
same neurocognitive mechanism across different time points
should adopt approaches that can quantify variability and
change, as well as intra- and interindividual processes and
mechanisms that affect the rate of change and variability (e.g.,
language skills, distractibility, mood, motivation). When
studying neurocognitive mechanisms across multiple devel-
opmental stages, it should also be noted that the same task
might tap different processes at different time points (39) and
that inferring the process from the measure is a challenge in
itself (40). For example, as children mature, they rely increas-
ingly on sophisticated, goal-directed, model-based decision-
making strategies rather than on habitual and computation-
ally less demanding model-free strategies (41–43). Therefore,
task-based measures of decision making administered at
different time points may capture different processes. Using
designs that maximize the signal-to-noise ratio, such as
Bayesian optimization, and statistical methods that account for
different sources of variance, such as latent variable modeling
and multilevel modeling, meaningful variability in task perfor-
mance can be distinguished from measurement error (25,44).

In addition, the emergence of mental health symptoms
reflects a multitude of genetic and environmental risk factors,
each of which affects multiple neurocognitive systems and
contributes a small proportion of variance in total mental
health risk (45). Multivariate tools capable of capturing
contributing pathways that may contain the shared variance
of multiple risk factors can provide predictive leverage (46).
Multivariate techniques can be used to build predictive
models of mental health risk, for example, by identifying
groupings of youths who are experiencing mental health
problems over time based on their performance on relevant
task-based measures. These data-driven groupings may align
better with underlying mechanisms than traditional diagnostic
categories (47,48). Neurocognitive mechanisms also do not
develop in isolation; they emerge in the context of other
processes, some of which may act as gatekeepers. For
example, phonological awareness may act as a gatekeeper to
working memory during early development. This means that
the construct validity of working memory tasks could be
affected by phonological awareness during early childhood,
but less so at later stages (49). Multivariate approaches also
allow examining whether and why variability in task perfor-
mance tends to decrease across development, while mean
performance improves (50). One possibility is that neuro-
cognitive mechanisms are more variable in and of themselves
during early relative to late development. Alternatively,
decreased task variability over time could be due to
decreased gatekeeping by neurocognitive mechanisms other
than the one under study. For example, verbal ability may
contribute to variability in task performance—as well as with a
child’s ability to comprehend task instructions—during early
childhood more than during late childhood. Therefore, re-
searchers who are interested in complex cognitive processes
may need to measure and model multiple different processes
Biological Psychiatry: Cognitive Neuroscien
to capture their codevelopment reliably and sensitively over
time.

Neurocognitive development is also intrinsically interactive
and situated in a particular context. Traditional experimental
studies are rarely designed to account for contextual factors
such as circadian rhythms, hormonal fluctuations, or changes
in the social environment. Contextual factors are often
controlled for, but they could instead be examined as factors
contributing to variability in the neurocognitive mechanism of
interest. This can be achieved by combining cognitive mea-
surements with measures of biological or social environmental
factors, particularly measures addressing social risk and pro-
tective factors that are critical in shaping development and
mental health and that themselves evolve during development.
For example, behavioral genetics research has indicated that
the rearing environment influences individual differences in
cognitive ability during early childhood, but does so to a lesser
extent during adolescence, when nonshared environmental
exposures (e.g., different peer groups) become relatively more
influential (51). In addition, people are active cocreators of their
environments, which partly explains why social risk factors are
not distributed at random in the population (52,53). Conse-
quently, studying the covariation between neurocognitive
function and contextual factors in a temporally sensitive way
can help to explain how individual differences in neuro-
cognitive mechanisms relate to the generation and mainte-
nance of social risk.

COGNITIVE MICROSCOPY: ADAPTIVE DESIGN
OPTIMIZATION, TEMPORALLY SENSITIVE TASK
ADMINISTRATION, AND MULTILEVEL MODELING

We propose one new approach for overcoming some of the
methodological shortcomings outlined above, which we refer
to as cognitive microscopy (Figure 1). This approach integrates
3 main methodologies—adaptive design optimization,
temporally sensitive task administration, and multilevel
modeling—to address the challenges of extracting metrics of
variability and change within a multivariate framework.

Adaptive design optimization involves sampling parameters
strategically to obtain a sensitive assessment of performance
thresholds (54,55). This approach involves 2 main steps. A task
is first developed and characterized in terms of a generative
model, namely, a model that relates parameter variability to
variability in task performance (56). This model is then used
during administration of the adaptive optimized task version.
On each task trial, a parameter estimate based on the data
obtained thus far is inferred, and the following trial is chosen to
maximize the amount of information gained. Because this
approach maximizes the informative value of each trial, it can
be especially beneficial when lengthy cognitive assessments
are impractical or costly, such as in large-scale data collec-
tions or in functional magnetic resonance imaging research
(54). For example, in a decision-making task, each participant
would be shown choice options that are tailored to their
response patterns rather than all possible options (55).
Bayesian adaptive methods are the state-of-the-art for efficient
adaptive design and allow an optimal tradeoff between minimal
task length and efficient parameter estimation from task per-
formance (34). Bayesian adaptive methods are particularly
ce and Neuroimaging - 2023; -:-–- www.sobp.org/BPCNNI 3
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Figure 1. Visual representation of the proposed cognitive microscopy approach, consisting of 3 steps. (A) Adaptive design optimization: designing a task
that dynamically modifies some aspects (e.g., task difficulty) based on participant performance, i.e., using Bayesian adaptive methods to estimate parameter
values best describing the data as they accumulate (after each trial or a number of trials) and optimizing trials accordingly. (B) Temporally sensitive task
administration: administering task-based assessments in a way that accounts for temporal variability in the cognitive function of interest, e.g., by sampling it at
different times of the day for short intervals through mobile technology. (C) Multilevel modeling: using statistical techniques to analyze average performance
(stable between-person variance) but also individual variability (intertrial and interassessment variance) and developmental change (interassessment variance),
net of measurement error. In the example, participant 1 has stable average but high variation in performance, participant 2 has low within-session variability but
high between-session variability, and participant 3 is relatively stable over time.

Neurocognitive Measurements in Developmental Settings
Biological
Psychiatry:
CNNI
efficient because they minimize the number of steps required
to identify the underlying cognitive model and its parameter
values (57). Therefore, such methods can obviate the need to
collect data from large samples or to administer long and
demanding assessments, which is especially difficult in
developmental settings (58).

Temporally sensitive task administration means flexible
sampling that can be tailored to the neurocognitive mechanism
of interest to detect temporal variability within a given time
frame—from minutes to years, depending on the research
question. One example of this approach is repeated short task
administration, which allows capturing snapshots of cognitive
function and extracting within-person metrics without intro-
ducing some of the measurement artifacts associated with
traditional single-shot full-length task administration in labo-
ratory settings (10,59,60). This approach can detect develop-
mental change even when considering a relatively small
number of repeated task administrations in a limited time
window. When increasing sample size is precluded, repeated
task administration is also an alternative method to increase
statistical power (61). Although traditional one-occasion
snapshot measurements can capture the average perfor-
mance in a given setting, they do not allow the investigation of
stability and variability over time. Repeated short tasks could
be delivered noninvasively in naturalistic settings using
portable or wearable devices (62). In this modality, repeated
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
short tasks may also be readily integrated into large-scale data
collection, thereby overcoming power limitations of small-
sample studies (63,64). This approach shares features with
methods such as experience sampling, ambulatory assess-
ment, ecological momentary assessment, and intensive lon-
gitudinal data collection (65). These methods have been
increasingly employed to assess affect and mood but less so
for neurocognitive mechanisms (66,67), likely because of the
length of traditional task-based measures and concerns about
their reliability. Bayesian adaptive optimization methods have
recently been used to obtain metrics of stability and variability
based on brief and internally valid individual task assessments
(34,68). However, only limited psychometric work has been
conducted on extracting stable and variable properties of
cognitive function from short tasks despite the possibility that
these would offer something conceptually comparable with
questionnaire ratings, which are based on a number of ex-
emplars of a particular trait or behavior. In other words,
repeated short task administration could enable extracting
performance averages that represent stable information-
processing characteristics comparable with the stable char-
acteristics that are sampled by questionnaire ratings.
Furthermore, variability in task performance over time has
rarely been the object of study in and of itself (69), with some
exceptions such as the study of reaction time variability in
attention-deficit/hyperactivity disorder (70–72). This is an area
023; -:-–- www.sobp.org/BPCNNI
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that deserves more attention because the consistency of a
particular information-processing style may itself indicate
greater or lesser mental health risk. Advances have also been
made in delivering brief task assessments at scale (73,74).
However, the studies that have been conducted to date have
typically been cross-sectional, with no explicit focus on the
longitudinal characterization of neurocognitive mechanisms,
which we argue is particularly beneficial when studying
developmental samples. Metrics of stability and variability in
cognitive function may represent markers of mental health risk
and also, therefore, offer important clues regarding mecha-
nisms that should be targeted in interventions.

Multilevel models (or hierarchical linear models) can be
especially fruitful when analyzing data from repeated adaptive
task administrations in developmental settings. Multilevel
models are a family of statistical techniques that can be used to
detect sources of variability in the presence of multiple sam-
pling dimensions, such as clusters of participants within groups
(e.g., students in the same class) or assessment visits in lon-
gitudinal designs (75,76). Because they separate variability
within participants, differences between them, and measure-
ment error, these models are better suited to studying devel-
opment as a continuous process than traditional statistical
methods (27,77–79). In this context, multilevel modeling stra-
tegies have been used to study the development of cognitive
functions (80) and brain circuits supporting them (81). Although
multilevel modeling requires considerable quantitative exper-
tise, the benefits offered by this approach may motivate re-
searchers to develop expertise in this area. A wide range of
open-source, hands-on tutorials (e.g., R Boot camp: Introduc-
tion to Multilevel Model and Interactions, offered by Penn State
University) and tools for classical (82) and Bayesian (83) esti-
mation are freely available online. Moreover, large-scale
collaborative efforts and consortia have created opportunities
to aggregate datasets and increase power to conduct such
sophisticated statistical analyses. A case could also be made
for academic institutions to provide researchers, especially
early-career researchers, with the time and training infrastruc-
ture needed to acquire expertise in relevant analytical tools.
Ideally, institutions would invest in growing and retaining
methodological expertise in this area by offering job security
and career progression pathways to researchers who focus
specifically on developing and applying such analytical tools.
CONCLUSIONS

Efforts to develop more sensitive, reliable, and scalable neu-
rocognitive measurements are required to identify develop-
mental mechanisms of mental health problems. Our progress
toward effective intervention will undoubtedly rely on our ability
to build a proper mechanistic understanding of mental health
conditions, for which improved cognitive phenotyping is vital.
In developmental settings, this painstaking work needs to
account for the stability, variability, and change in neuro-
cognitive mechanisms that occur across development. Meth-
odological approaches that aim to do so, such as adaptive
design optimization, temporally sensitive task administration,
and multilevel modeling, have the potential to improve our
Biological Psychiatry: Cognitive Neuroscien
understanding of the neurocognitive mechanisms that underly
mental health risk across developmental stages.
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