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ScienceDirect
Psychological interventions are first-line treatments of

depression. Despite a rich theoretical background, the

mediators of treatment effects remain only partially

understood: it has been difficult to precisely delineate the

targets psychological interventions engage, and even more

difficult to differentiate amongst the targets engaged by

different psychological interventions. Here, we outline these

issues and discuss a surprisingly understudied approach,

namely the study of cognitive and computational tasks to

measure psychological treatment targets. Such tasks benefit

from substantial advances in cognitive neuroscience over the

past two decades, and have excellent face validity. We discuss

two candidate tasks for back-translation and conclude with a

critical evaluation of potential problems associated with this

neuro-cognitive approach.
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Introduction
Depression is amongst the most burdensome illnesses

worldwide [1]. A large treatment gap exists, both due to

insufficient provision of treatment and due to limited

efficacy of existing treatments [2]. There is an urgent
www.sciencedirect.com 
need for treatments that better engage the mechanisms

causing the illness. Cognitive Behavioural Therapy

(CBT), for instance, is a standard first-line treatment

[3] with proven efficacy established in numerous random-

ized controlled trials [4]. However, it has been surpris-

ingly difficult to establish the mechanisms by which

psychotherapeutic treatments such as CBT work, and

even more difficult to differentiate the mechanisms

engaged by different forms of therapy. The latter resulted

in a prominent claim that different psychotherapies,

regardless of their specific ingredients, lead to similar

outcomes (‘Dodo bird effect’) [5].

Part of this is likely to arise from the fact that different

psychological interventions contain similar components,

or component interventions [5]. Arguably, the lack of

knowledge about which interventions affect which spe-

cific mechanisms is an important factor maintaining the

treatment gap. First, it prevents precision treatment

because it is not possible to measure the relevant mecha-

nisms in order to allocate treatments individually. For

instance, it limits the optimization of existing treatment

manuals through focusing on elements of a therapy that

are most likely to be effective for a specific individual

patient. Second, it hinders the development of novel

treatments which engage specific mechanisms more

effectively.

CBT and other psychotherapeutic approaches were in

part driven by the rich cognitive and learning theories of

the middle of the 20th century. A huge amount of

progress has been made since then in cognitive and

computational neuroscience leading to a better under-

standing of the relevant learning and cognitive processes

from a basic research point of view. Here, we consider

whether these advances have potential to elucidate the

functioning of existing interventions, and whether they

could support the back-translation into novel psychother-

apeutic modules.

Mechanisms and mediators in psychotherapy
research
The study of the mechanisms underlying the efficacy of

psychological treatments has focused on the identification

of mediators. A mediator is defined as a variable which is

on the causal path linking the intervention with the

treatment effect [6]. As an example, a popular idea posits

that cognitive change, that is, change in dysfunctional
Current Opinion in Behavioral Sciences 2021, 38:103–109
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beliefs, accounts for improvement in depressive symp-

toms brought about by cognitive therapy [7]. In order to

formally demonstrate that cognitive change is a mediator

of cognitive therapy, a cognitive therapy needs to change

the mediating variable (‘dysfunctional beliefs’) and

reduce depressive symptoms. Moreover, the change in

the mediator needs to precede, and to be proportional to,

the reduction of symptoms. Excellent reviews have noted

important limitations of the existing evidence on psycho-

therapy mechanisms and mediators, including inadequate

control conditions, limited sample sizes, and a focus on

differences between groups of individuals with and with-

out a diagnosis [6,8]. Here, we describe limitations asso-

ciated with the measurement and conceptualization of

the mechanisms themselves.

First, despite their indisputably high value in clinical

practice, there are difficulties around the use of self-report

instruments to measure mechanisms. Consider treat-

ments for anhedonia. Items assessing anhedonia in stan-

dardized questionnaires will often ask whether individu-

als were able to enjoy things they had previously enjoyed.

This precise wording may have been used in the therapy

session, with therapists encouraging individuals to iden-

tify sources of enjoyment, seek them out, and focus on the

enjoyment. As such, self-report is likely to be affected by

social desirability effects [9]. The repeated application of

self-report questionnaires might even exert a psychoedu-

cational effect [10]. Other systematic biases which might

impact on the validity of self-reports are known, such as

memory or recency effects in depression [11,12]. Further-

more, the measurement of self-reported symptoms and

self-reported mediators might be conflated as items in

both types of questionnaires can bear similarity. As such,

self-report instruments such as questionnaires, and pre-

post changes therein might function more as ‘tests of

knowledge’ rather than indexing true cognitive or beha-

vioural change [13].

Second, past mediator studies have tended to examine

full therapeutic approaches (for example, comparing

CBT, psychodynamic therapy and psychoanalysis [14])

and their relation to potential mediators. However, each

full psychotherapy involves multiple component inter-

ventions (Figure 1a) and any individual is likely only to

benefit from a subset of these interventions. For instance,

in Figure 1b, the interventions specific to Therapy 1 are

generally more effective, but some individuals respond

better to the interventions in Therapy 2. The effect size

when comparing two therapies is linear in the difference

between the average response probability to individual

components (Figure 1c), making large effects in the

comparison very unlikely. The presence of shared inter-

ventions can confound differences, and even have a

multiplicative effect on the ability to discover a difference

in efficacy (Figure 1c; a version of the ‘dodo bird’ effect).

If measurements of mechanisms allowed specific
Current Opinion in Behavioral Sciences 2021, 38:103–109 
interventions to be delivered only to sensitive individu-

als, the treatment effects would be improved.

Third, and related to the previous point, mechanistic

studies have at times examined mediators at a coarse scale.

For example, there is evidence that dysfunctional cogni-

tions measured with the Dysfunctional Attitude Scale

(DAS [15]) are a mediator of cognitive therapy (see Refs.

[8,13]). However, the DAS consists of various (i.e. 2–4)

uncorrelated factors [16]. While this could in principle be

addressed by using scales which have better internal con-

sistency and load on a single factor, this approach is unlikely

to ever work fully: after all, these processes interact in

complex manners and do not just superimpose linearly.

Refining mediators — neuro-computational
mechanisms of psychotherapy components
One potentially useful approach to address these limita-

tions is the integration of experimental paradigms from

computational cognitive neuroscience research into psy-

chotherapy research. These paradigms have been devel-

oped and validated as quantitative, objective measure-

ments of underlying cognitive processes. Over the last two

decades, these paradigms have often times been com-

bined with measurements of brain function using fMRI,

EEG or MEG, to dissect the neural correlates of these

processes. In some cases, such tasks are derived from

translational research, frequently offering even more

detailed insight into the neuro-functional and neuro-phar-

macological underpinnings of a cognitive process of inter-

est. Specifically, the computational models employed to

capture the underlying cognitive processes are inspired by

our knowledge about how neurons implement and com-

pute such processes. Hence, we termed them ‘neuro-

computational’ mechanisms. When combined with

computational modelling, they can disentangle complex

interacting latent factors that jointly shape cognition,

learning, generalization and affect. Some types of compu-

tational models (‘generative models’) allow for mechanis-

tically interpretable (albeit not necessarily independently

identifiable) computational parameters to be inferred (e.g.

[17,18�,19–21], see also Ref. [22]). There is recent evi-

dence that such neuro-computational measures may pro-

vide estimates of hidden, disease-relevant processes that

can usefully predict treatment trajectories [23�,24�,25,26].

Such neuro-computational measures are promising

because they address several of the issues identified in

the measurement of psychotherapy mechanisms identi-

fied above. First, psychotherapeutic interventions often

explicitly target the kinds of behaviours and cognitions

the computational-cognitive tasks are designed to asses

— core point we will elaborate on below. Second, by

relying on objective features of behaviour, neuro-compu-

tational probes circumvent some of the problems associ-

ated with self-reports outlined above: They are not as
www.sciencedirect.com
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Figure 1
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(a) Different psychotherapeutic approaches (yellow: Behavioural Activation; blue: Cognitive Restructuring) contain both shared and specific

interventions. (b) Individuals may respond or be sensitive to only a fraction of both the shared and specific components (yellow), while they may

be insensitive and unresponsive to the other interventions. A therapy is better if individuals have a high probability of responding to some of its

specific interventions. Here, the probability of responding to the three interventions specific to Therapy 1 is 0.5, while the probability of responding

to either the shared or the Therapy 2 interventions is 0.2. (c) Simulations based on an effect size of 1 when comparing therapies to wait-list

controls. The effect size for comparing two therapies is linear in the difference in response probability to each intervention, and the fraction of

shared interventions can have a multiplicative effect on the ability to observe a difference. The red dot shows the example in panel (b). A precision

psychotherapy approach would allow the delivery of only those interventions to which the individual is sensitive. This would increase the fraction

of effective interventions while also reducing shared interventions, and hence overall increase the effect size.
strongly influenced by the subjective views and, hence,

less susceptible to social desirability, nor do they show

similarities to symptom ratings.

However, these methods have only rarely been applied to

identify mediators of psychotherapy [27��,28], and where

this has been done, they have been deployed in pre-post

designs examining complete psychotherapy packages.

This shares the difficulties of comparing complete psy-

chotherapies outlined above: Even if a neuro-computa-

tional measure is found to be altered by a psychotherapy,

the presence of shared interventions impedes the assign-

ment of this effect to a particular psychotherapy (Figure 1).

Furthermore, the co-delivery of other interventions with

partial efficacy will confound the association.
www.sciencedirect.com 
As a result, there has been minimal research attempting to

relate specific interventions to specific underlying mech-

anisms. Recent advances allow behavioural task measures

to be easily deployed online in repeated-measures lon-

gitudinal designs [29]. This allows for novel study designs

where changes in specific underlying mechanisms are

associated with specific interventions.

Back-translating innovations of Cognitive
Neuroscience into Psychotherapy mediator
research
To illustrate the approach, we discuss two candidate

neuro-computational probes involving confidence and

reward-effort trade-offs in the treatment of depression.
Current Opinion in Behavioral Sciences 2021, 38:103–109
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Confidence as a candidate mediator for cognitive

therapy in depression

Patients with depression often show biases towards low

confidence when judging their own accomplishments and

abilities. ‘Feelings of worthlessness’ or ‘inappropriate

guilt’ are amongst the DSM-V criteria for depression

and under confidence when performing simple percep-

tual decision-making tasks is associated with depressive

symptoms [18�] and lower self-esteem [30]. Negative self-

evaluation is also a key element of a prominent cognitive

theory of depression [31]. CBT targets negative self-

evaluation through Cognitive Restructuring (CR) [7].

This involves first identifying patients’ negative thought

patterns and pessimistic assumptions about themselves,

which includes the general feeling of low confidence in

their abilities (e.g. “I am performing worse at work than

my colleagues”, “I am not an interesting conversation

partner”). CR trains individuals to notice the automatic

thought patterns in day-to-day life, to question and

deconstruct them (“What evidence is there that this

thought isn’t accurate?”) and to replace them with more

realistic thought patterns.

CR can be viewed as training of metacognitive bias and

confidence. In cognitive neuroscience research, confi-

dence and metacognitive bias have been extensively

studied in tasks via repeated retrospective confidence

judgements after making a decision (Figure 2a). Compu-

tational models can directly infer confidence levels from

objective performance data, e.g. choices and response

times [32]. Such computational measures of metacogni-

tion enable the implicit measurement of confidence. A

recent theoretical framework [33,34] posits a two-way

relationship between metacognitive ability in a domain

and broader beliefs about self-ability. It suggests that

confidence levels measured in specific domains, e.g.

through tasks, could be a proxy for measures such as

self-efficacy, or broader confidence judgements. Hence,

the possibility that CR might influence negative self-

evaluation by altering metacognitive processes can be

tested by examining whether task-level metacognition

mediates the impact of CR on self-evaluation. Metacog-

nition as a mediator would thereby provide a link

between symptoms of (and interventions to treat) depres-

sion and the neurobiology of metacognition. Importantly,

the use of the task as a measure of the metacognitive

mechanism might address some of the issues raised

above.

Reward- and effort-based decision-making as candidate

mediators for behavioural activation

Patients with depression also show reduced engagement

in rewarding activities [35]. The decision to engage in

rewarding activities (e.g. going out, meeting friends)

compared to ‘depressive’ behaviours

(e.g. staying in bed) can be viewed as a trade-off between

the anticipated reward and the anticipated effort for each
Current Opinion in Behavioral Sciences 2021, 38:103–109 
behaviour [23�]. The reduction in rewarding activities

seen in depression might hence result from decreased

anticipated reward or from increased anticipated effort.

Behavioural Activation (BA), a widely disseminated first-

line therapy for depression [36,37] contains component

interventions that aim to directly address these aspects:

planning and the scheduling of rewarding activities. The

aim of planning is to ensure activities are realistic and

achievable, thereby reducing the probability that effort

will be spent without achieving a goal. The aim of

scheduling rewarding activities is to ensure rewards are

experienced. The underlying assumption is that the

experience of successful planning and rewarding activi-

ties re-establish reward and effort expectations. Compu-

tational accounts of learning from reinforcement [38]

suggest that learning, that is, the impact of the outcomes,

is driven by the differential between the actually received

reinforcement and the expectation, e.g. for the rewards:

Rant t þ 1ð Þ ¼ Rant tð Þ þ a�ðRexp tð Þ þ � Rant tð ÞÞ

where t indexes a specific situation, Rantðt þ 1Þ is the

anticipated reward which will influence the decision to

engage in an activity in the next situation, Rexp tð Þ is the

experience of reward during execution of the planned

activity and a is a learning rate. Thus, a change in Rant

needs to occur for patients to engage more in an activity.

Hence, Rant might be a mediator of the effect of BA on the

depressive symptom pattern. The model also indicates

that for Rant to be increased Rexp needs to be larger than

Rant and the learning rate a needs to be larger than

0. Hence, both, the capacity to learn and the capacity

to experience reward might be perquisites for BA to work

and moderators of its impact. The anticipation of effort

can be updated according to the same update rule as the

anticipation of reward.

There is a large literature on learning from rewards, and

on the trade-off between rewards and efforts [39–42]. In

one simple task, different amounts of effort yield differ-

ent rewards [23�,43] (Figure 2b). A generative computa-

tional model of behaviour in this task includes parameters

indexing effort and reward sensitivity (implemented as a

trade-off between the necessary effort and the resulting

reward anticipation), the vigour used to execute the

effortful behaviour and the reaction to the reward (expe-

rience). It also formalizes the influence of previous effort-

ful behaviour and reward exposure on new choices as

prediction errors [17,23�,44]. Such probes should hence

have value as measurements of the putative mechanisms

underlying the component interventions of BA.

Limitations
However, the use of neuro-computational measures in

psychotherapy mediator research also faces several sub-

stantial challenges. Most importantly, cognitive tasks
www.sciencedirect.com
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Figure 2
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(a) A simple perceptual decision-making task where participants are asked to judge which box contains a larger number of dots. Traditionally, to

measure confidence, participants are asked to retrospectively give their confidence ratings. We suggest a framework for measuring individual

confidence profiles via a computational measure that has been shown to robustly infer confidence from objective performance data (i.e. how long

it takes subjects to respond, and how accurate they are). Note that the perceptual task can be replaced with a more engaging task, for example,

a memory task where subjects are asked to memorize a set of objects. (b) Physical effort for reward task. On each trial participants need to

decide between investing more effort (e.g. 100 button presses) for a higher reward (e.g. 7 points) or less effort (here 20 button presses) for a

smaller reward (here 1 point). They need to indicate their choice with a button press. The choices relate to the anticipation of effort (Eant) and

reward (Rant). These quantities can be estimated by means of a computational model. The chosen effort needs to be executed by means of button

presses. The reaction times (RT) between those button presses can be used to compute the vigour, which relates to the experience of the effort

(Eexp) during the trial.

www.sciencedirect.com Current Opinion in Behavioral Sciences 2021, 38:103–109
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were recently found to be poor predictors of self-report

measures, and of self-reported real-world outcomes in a

study evaluating predictive power in the domain of self-

control [45��]. Given the importance of self-reported

symptom change in motivating treatment seeking and

efficacy, this is an important challenge. One potentially

addressable reason might be poor psychometric proper-

ties of commonly used tasks, including poor test-retest

validity [46,47]. These could potentially be addressed by

enhancing the number of trials [48], by combining differ-

ent behavioural read-outs (e.g. choices, reaction times) in

a computational model [49], or by optimizing model

estimation approaches [50,51]. Recent approaches have

also combined self-report of subjective well-being or pain

with objective measures (task behaviour, fMRI [52,53]).

Conclusion
Neuro-computational measurements are promising med-

iators of specific psychotherapeutic interventions. They

are objective and capture actual behaviour rather than

subjective thoughts about behaviour, which is both a

strength and a weakness. They profit from a rich neuro-

scientific and computational underpinning, relating them

to normative models of brain function and often allow for

detailed quantitative studies of the underlying neural

mechanisms. Being often derived from translational

research they allow for precise hypotheses regarding

the associations of cognitive processes with certain neu-

rotransmitter systems — an important aspect when it

comes to tailoring combined (pharmacological/psycholog-

ical) treatment approaches. Nevertheless, substantial

obstacles exist not only for using tasks in psychotherapy

research, but also more broadly for measuring inter-indi-

vidual differences in general [54�]. Research should

urgently focus on addressing these obstacles in order to

allow for their potential as mediators of psychological

interventions to be tested.

Conflict of interest statement
Nothing declared.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Patel V et al.: Addressing the burden of mental, neurological,
and substance use disorders: key messages from disease
control priorities. Lancet 2016, 387:1672-1685.

2. Saxena S, Thornicroft G, Knapp M, Whiteford H: Resources for
mental health: scarcity, inequity, and inefficiency. Lancet 2007,
370:878-889.

3. Davidson JR: Major depressive disorder treatment guidelines
in America and Europe. J Clin Psychiatry 2010, 71:4.

4. Cuijpers P et al.: The efficacy of psychotherapy and
pharmacotherapy in treating depressive and anxiety
disorders: a meta-analysis of direct comparisons. World
Psychiatry 2013, 12:137-148.
Current Opinion in Behavioral Sciences 2021, 38:103–109 
5. Luborsky L et al.: The dodo bird verdict is alive and well—
mostly. Clin Psychol Sci Pract 2002, 9:2-12.

6. Kazdin AE: Mediators and mechanisms of change in
psychotherapy research. Annu Rev Clin Psychol 2007, 3:1-27.

7. Beck AT: Cognitive Therapy of Depression. Guilford Press; 1979.

8. Lemmens LH, Müller VN, Arntz A, Huibers MJ: Mechanisms of
change in psychotherapy for depression: an empirical update
and evaluation of research aimed at identifying psychological
mediators. Clin Psychol Rev 2016, 50:95-107.

9. Fastame MC, Penna MP: Does social desirability confound the
assessment of self-reported measures of well-being and
metacognitive efficiency in young and older adults? Clin
Gerontol 2012, 35:239-256.
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