
                                                                    

University of Dundee

Abnormal Reward Valuation and Event-Related Connectivity in Unmedicated Major
Depressive Disorder
Rupprechter, Samuel ; Stankevicius, Aistis ; Huys, Quentin J. M. ; Seriès, Peggy; Steele,
Douglas
Published in:
Psychological Medicine

DOI:
10.1017/S0033291719003799

Publication date:
2020

Licence:
CC BY-NC-ND

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Rupprechter, S., Stankevicius, A., Huys, Q. J. M., Seriès, P., & Steele, D. (2020). Abnormal Reward Valuation
and Event-Related Connectivity in Unmedicated Major Depressive Disorder. Psychological Medicine, 1-9.
https://doi.org/10.1017/S0033291719003799

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jan. 2022

https://doi.org/10.1017/S0033291719003799
https://discovery.dundee.ac.uk/en/publications/5ab7ecb9-d946-45b7-bc0e-9ec5d9b6dde2
https://doi.org/10.1017/S0033291719003799


1 

Abnormal Reward Valuation and Event-Related Connectivity in Unmedicated Major 

Depressive Disorder 

S. Rupprechter,1 A. Stankevicius,1 Q.J.M. Huys,2,3 P. Series,1 J.D. Steele 4,5

1Institute for Adaptive and Neural Computation, University of Edinburgh, UK 

2Max Plank Centre for Computational Psychiatry and Ageing Research, UCL, UK 

3Camden and Islington NHS Foundation Trust, UK 

4Division of Imaging Science and Technology, Medical School, University of Dundee, UK 

5Department of Neurology, Ninewells Hospital, NHS Tayside, UK 

Abstract words:  249 (<250) 

Total words:  4,499 (<4500) 

Tables: 1 

Figures: 4 

Key words: major depressive disorder, unmedicated, decision-making, neural valuation, 

event-related connectivity 

Author for correspondence: 

Prof Douglas Steele 

MD PhD MIPEM MRCPsych 

Honorary Consultant Psychiatrist 

School of Medicine, University of Dundee 

Mailbox 5, Ninewells Hospital & Medical School 

Dundee, UK, DD1 9SY 

Tel: (44) (0)1382 383579 

Email: dsteele@dundee.ac.uk 

https://www.editorialmanager.com/psm/download.aspx?id=195667&guid=3fa39416-7bd2-4195-bcb0-1a54feacfde7&scheme=1
https://www.editorialmanager.com/psm/download.aspx?id=195667&guid=3fa39416-7bd2-4195-bcb0-1a54feacfde7&scheme=1


2 

Abstract 

Background.  Experience of emotion is closely linked to valuation.  Mood can be viewed as a 

bias to experience positive or negative emotions and abnormally biased subjective reward 

valuation and cognitions are core characteristics of major depression. 

Methods.  Thirty-four unmedicated subjects with major depressive disorder and controls 

estimated the probability that fractal stimuli were associated with reward, based on passive 

observations, so they could subsequently choose the higher of either their estimated fractal 

value or an explicitly presented reward probability.  Using model-based fMRI, we estimated 

each subject’s internal value estimation, with psychophysiological interaction analysis used 

to examine event-related connectivity, testing hypotheses of abnormal reward valuation 

and cingulate connectivity in depression. 

Results.  Reward value encoding in the hippocampus and rostral anterior cingulate was 

abnormal in depression. In addition, abnormal decision-making in depression was 

associated with increased anterior mid-cingulate activity and a signal in this region encoded 

the difference between the values of the two options. This localised decision-making and its 

impairment to the anterior mid-cingulate cortex consistent with theories of cognitive 

control.  Notably, subjects with depression had significantly decreased event-related 

connectivity between the anterior mid-cingulate cortex and rostral cingulate regions during 

decision-making, implying impaired communication between the neural substrates of 

expected value estimation and decision-making in depression. 

Conclusions.  Our findings support the theory that abnormal neural reward valuation plays a 

central role in MDD.   To the extent that emotion reflects valuation, abnormal valuation 

could explain abnormal emotional experience in MDD, reflect a core pathophysiological 

process and be a target of treatment. 
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Introduction 

Psychiatric disorders are the leading cause of disability world-wide with Major Depressive 

Disorder (MDD) the commonest cause (Whiteford et al., 2013).  Severe and enduring mental 

illness is associated with a reduction in lifespan of 5-15 years (Chang et al., 2011) and suicide 

is a leading cause of death in young adults (WHO, 2018).  However, understanding of illness 

mechanisms remains rudimentary, there are no biomarkers in clinical use, clinical outcomes 

are hard to predict for individual patients and its widely recognised that clinical practice in 

psychiatry has not progressed significantly in the past 50 years (Stephan, Bach, et al., 2016; 

Stephan, Binder, et al., 2016).  Better understanding of illness mechanisms is crucial for 

progress. 

    Dolan has argued that emotional experience is closely linked to valuation (Dolan, 2002).  

Normal mood can be viewed as a bias to experience positive or negative emotions and 

abnormally biased subjective reward valuation (anhedonia) and cognitions are core 

characteristics of MDD (Gradin et al., 2011; Kumar et al., 2008).  The origin and persistence 

of core symptoms of MDD, such as anhedonia, helplessness, rumination and cognitive 

biases can be explained as arising from biased internal processing; i.e. a biased evaluation of 

internal states and biased cognitions (Q. Huys, Daw, & Dayan, 2015; Q. Huys & Renz, 2017). 

Such a decision-theoretic approach allows quantitative coupling of valuation and action 

which is a central aspect of emotion (Dolan, 2002).  A behavioural meta-analysis found 

evidence for reduced primary reward value sensitivity in depression (Q. J. Huys, Pizzagalli, 

Bogdan, & Dayan, 2013) and other recent reviews have argued for blunted reward valuation 

in anxiety and depression (Bishop & Gagne, 2018; Rizvi, Pizzagalli, Sproule, & Kennedy, 

2016) modulated by stress vulnerability (Pizzagalli, 2014).  This conceptualisation of MDD is 

consistent with the National Institute of Mental Health (NIMH), Research Domain Criteria 

(RDoC, Cuthbert & Insel, 2013) framework, implying a blunted positive valence system, 

increased sensitivity of the negative valence system and cognitive biases in line with both 

(Johnston et al., 2015). 

      Model-based fMRI can be used to determine brain region encoding of signals derived 

from a computational model such as estimated value or reward prediction error (O'Doherty, 

Hampton, & Kim, 2007). Meta-analyses have highlighted the importance of the striatum and 

ventromedial prefrontal cortex as regions encoding value (Bartra, McGuire, & Kable, 2013; 



4 
 

Chase, Kumar, Eickhoff, & Dombrovski, 2015).  Using model-based fMRI with an 

instrumental task, we reported blunted encoding of expected reward value in chronically 

medicated patients with treatment-resistant MDD and schizophrenia (Gradin et al., 2011); 

however, the effect of medication on these results was unclear. A recent meta-analysis of 

fMRI and EEG studies found converging evidence for blunted striatal activation and 

feedback related negativity responses to reward in depression which may precede the first 

episode of illness (Keren et al., 2018). Very recently, we reported behavioural evidence for 

impairments in both the learning and decision-making phases of a novel Pavlovian 

conditioning task using computational modelling (Rupprechter, Stankevicius, Huys, Steele, & 

Series, 2018). Here we extend that behavioural analysis to identify the neural substrates of 

these abnormalities. 

    Although a number of studies have reported reward prediction error (RPE) abnormalities 

(e.g. most recently, Kumar et al., 2018), to our knowledge only a few have tested for 

expected reward value encoding abnormalities using fMRI with a computational model in 

MDD patients: we reported blunted reward value encoding (Gradin et al., 2011) and 

reduced reward value signals have been reported in elderly depressed patients with a 

history of suicide attempts (Dombrovski, Szanto, Clark, Reynolds, & Siegle, 2013).  In 

addition, Greenberg et al reported that healthy subjects but not unipolar unmedicated 

depressed patients showed the expected theoretical inverse relationship between 

prediction error and reward expectancy, mediated by anhedonia (Greenberg et al., 2015) 

with similar observations in medicated depressed patients with MDD or Bipolar Disorder 

(Chase et al., 2013).  Notably though, Greenberg et al did not find evidence for blunted 

reward value or RPE signals in unmedicated unipolar depression (Greenberg et al., 2015). 

      Here we tested the following four hypotheses:  (a) is it possible to replicate previous 

findings of blunted striatal reward response signals in MDD (Keren et al., 2018), (b) do 

unmedicated subjects with MDD exhibit abnormal brain encoding of learned Pavlovian 

reward values during decision making, (c) are there correlations between aberrant brain 

encoding and illness severity and (d) is there evidence for abnormal event-related 

connectivity in MDD for brain regions identified as exhibiting abnormal encoding of reward 

values. 
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Methods and materials 

Participants 

The study was approved by the East of Scotland Research Ethics Committee (REC reference 

13/ES/0043) and written informed consent obtained from all subjects.  Thirty-nine subjects 

comprising 19 satisfying DSM-IV criteria for MDD not receiving antidepressant medication 

and 20 healthy controls matched on age, sex and IQ (NART; Nelson & Wilson, 1991) were 

recruited. Diagnosis was made according to MINI Plus v5.0 structured diagnostic criteria 

(Sheehan et al., 1998). Demographics and illness severity (Beck Depression Inventory, BDI; 

Beck, Steer, Ball, & Ranieri, 1996) scores are summarised in Table 1 with more details in 

Supplementary Materials.  Exclusion criteria were claustrophobia, serious physical illness, 

pre-existing cerebrovascular or other neurological disease, previous history of significant 

head injury and receipt of medication likely to affect brain function. Subjects were recruited 

using the University of Dundee advertisement system HERMES and compensated for 

participation (£20) with up to £10 extra depending on task performance.  One MDD subject 

and four controls were excluded due to problems with fMRI data acquisition, so data from 

18 MDD subjects and 16 controls were analysed. Power estimation in fMRI is recognised as 

difficult because of the complexity of the analyses and not possible in this instance as no 

previous similar data existed to allow such an estimate.  We did however know on the basis 

of previous work that the behavioural data, acquired in the same experimental session, 

showed a significant abnormality (Rupprechter et al., 2018).   

 

Paradigm 

The task was adapted from our earlier work (Stankevicius, Huys, Kalra, & Series, 2014) and 

described in detail in Supplementary Materials.  Subjects passively observed a series of 

different fractals; each fractal was always followed by either a reward symbol (£) indicating 

‘value’ or a blank screen indicating ‘no value’.  Each fractal was observed on four occasions. 

Participants had to form an internal estimate of the value (reward probability) associated 

with each fractal (i.e. number of observed rewards divided by total number of 

observations). The fractal then appeared at a later time in a single decision trial where 

subjects were asked to choose the higher reward probability, which required comparison of 

their internally estimated value for the fractal with a displayed numeric value.  Participants 



6 
 

made a choice by pressing one of two available buttons (“choose fractal” and “choose 

explicit probability”). Either option could have a value 10% 20% or 30% higher than the 

other or be of equal value.  Either option could have a value 10% 20% or 30% higher than 

the other or be of equal value. This means a total of 240 fractals (60x4) were observed with 

60 decisions being made.  The sequence of observations and decisions were interleaved in a 

pseudo-random order and identical for all subjects. The study was divided into 4 sessions of 

15 min each, between which there were periods where participants could briefly rest. Each 

session was split into 3 blocks and during each block participants made 5 decisions after 

having observed 5x4 fractals.   Participants did not receive feedback during the task but 

were told their performance scores would be converted into money they would receive at 

the end of the experiment. The task is summarised in Fig. 1. 

  

Computational Modelling of Behaviour 

To measure individuals’ performance, we plotted their psychometric response curves as the 

percentage of times a fractal option was chosen as a function of the difference between the 

probabilities associated with each option with curves fitted with a sigmoid function 

(Rupprechter et al., 2018).  The slopes of the sigmoid curves were significantly steeper for 

controls compared to MDD (p=0.025) and detailed computational analyses indicated that 

MDD was associated with impaired value learning.  Details on these behavioural analyses 

are summarised in the Supplementary Materials and have been published elsewhere 

(Rupprechter et al., 2018). 

    Briefly, to reveal which decision-making components explained the performance 

difference, three different families of models were compared, reflecting distinct hypotheses 

about how participants make decisions. All models assumed participants internally 

estimated a value for each observed fractal then compared this estimate to the explicitly 

presented value when making a decision.  For model fitting, parameters were estimated 

using maximum a posteriori estimates incorporating an empirical prior estimated from 

behavioural data initialised using maximum likelihood estimates.  Thereafter, Expectation-

Maximisation was used to iteratively improve the value estimates and the model that best 

fitted the behavioural data, taking into account model complexity, was identified using the 

integrated Bayesian Information Criterion (Q. J. Huys et al., 2013; Rupprechter et al., 2018).  
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Here we focus on the best model identified from that work (Rupprechter et al., 2018) as this 

was used for model based-fMRI analyses. 

    The model that best described observed behaviour was termed ‘Leaky’ and included a 

retrospective discounting factor or memory loss parameter (Rupprechter et al., 2018). 

Internal value estimates were assumed to be updated after observing fractal i and 

associated reward r occurring at time t as 

 

where A is a memory parameter (range 0 to 1) and smaller A reflected increased forgetting 

or retrospective discounting, r was unity if a £ reward symbol was observed and zero 

otherwise.  The probability of choosing fractal i was calculated using a softmax function 

 

incorporating estimated value (V) and explicitly presented value ()  where f(x) = x/4 is a 

transformation of the internal value estimate compared to the explicitly displayed reward 

probability of the alternative choice.  The inverse temperature β determined the ability of 

participants to use internal value estimations to make decisions. Smaller values of β 

indicated a more variable use of internal values. 

 

Image Acquisition and Pre-processing 

Functional whole brain images were acquired using a 3T Siemens Magnetom Tim Trio 

scanner using an echo-planar imaging sequence with the following parameters: repetition 

time = 2500 ms, echo time = 30 ms, flip angle = 90°, field of view = 224 mm, matrix = 64 x 

64, 37 slices, voxel size 3.5 x 3.5 x 3.5 mm. The first four blood oxygen level-dependent 

volumes were discarded as standard because of transient effects.  Data were pre-processed 

using Statistical Parametric Mapping 12 (SPM12; https://www.fil.ion.ucl.ac.uk/spm/) with 

functional images realigned to the first image, unwarped and co-registered to the 

segmented T1 weighted structural image. An estimated deformation field was used to 

spatially normalise the images and an 8 mm Gaussian kernel used to smooth the functional 

images. 

http://www.fil.ion.ucl.ac.uk/spm/
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Random Effects Image Analyses 

Random-effects, event-related designs were used for analyses. Three event times were of 

particular interest: (a) when participants observed a fractal stimulus and may have retrieved 

their previously estimated value for that fractal, (b) when participants observed a rewarding 

Pavlovian association (£ symbol) indicating reward value or alternatively a blank screen in 

the case of zero value, this being the trial “outcome event”, and (c) when participants were 

prompted to choose between the estimated value of an observed fractal and an explicit 

probability value this being the "decision event".  For first level analyses, events were 

modelled as truncated delta functions and convolved with the SPM12 canonical 

haemodynamic response function without time or dispersion derivatives.  Vectors 

representing these events were entered into first level analyses for each subject and six rigid 

body motion realignment parameters estimated during pre-processing included as 

covariates of no interest.  Activation at these event times was investigated using both 

model-based and standard fMRI strategies, testing for significant activations across and 

between groups and for correlations of activity with illness severity scores. 

    Given strong evidence for blunted striatal responses to rewards in depression, we used 

the results of an automated meta-analysis of fMRI studies on healthy subjects ('Neurosynth', 

Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) with the search term ‘reward’ which 

identified 922 studies. We then chose voxels with the global maximum z-score in left and 

right hemisphere located in left (-12,10,-8) and right (12,10,-8) nucleus accumbens (NAc). 

For each participant in our study we extracted median beta values from the reward contrast 

maps from a 5mm sphere centred at these co-ordinates, then tested for significant group 

differences using Welch’s t-test. 

    For model-based fMRI, the Leaky model was used to calculate the value of each fractal on 

each trial. The estimated value was used as a first level analysis parametric modulator at the 

time when the fractal stimulus was presented. Additionally, the difference between the 

internally estimated fractal probability value and the displayed explicit probability value was 

calculated and used as a parametric modulator at the decision time.  The value difference 

was defined as Vchosen – Valternative, i.e. the value of the chosen option minus the value of 

the alternative option. Notably, our model uses the value difference to assign probabilities 
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for choosing each option at the decision time. We therefore expected to observe a value 

difference encoding signal in regions identified as being active at the decision time. 

    Event-related functional connectivity between brain regions activated during the task was 

calculated using the generalised Psychophysiological Interaction (gPPI) method (McLaren, 

Ries, Xu, & Johnson, 2012), which tested the hypothesis that value-based decision making 

involves a distributed network and MDD is associated with abnormal connectivity in that 

network.  Specifically, we assessed how the “decision event” (the psychological state) 

modulated activity within brain networks that included our anterior mid-cingulate (aMCC, 

Tolomeo et al., 2016) seed region. For each participant, we calculated the contrast at the 

first (i.e. subject) level (connectivity at decision time > implicit baseline) and then took these 

contrasts to a standard second (i.e. group) level analysis using SPM12. 

    For all calculations, activity was corrected for multiple comparisons using a Monte Carlo 

method (Slotnick, Moo, Segal, & Hart, 2003) with simultaneous requirement for a cluster 

extent threshold of 108 contiguous resampled voxels and a voxel threshold of 𝑝<0.05, 

resulting in a whole brain corrected cluster threshold of 𝑝<0.01. This threshold was enforced 

for all contrasts. 
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Results 

There was no significant difference between MDD and control groups in the number of 

(missed) behavioural responses from subjects during the paradigm: two group t-test 

p=0.728.  Since behavioural responses were matched and subjects were not given feedback 

during the task, all events were matched between groups. 

 

Striatal reward response 

The outcome event time was associated with strong activations in regions including the 

bilateral striatum (10,12,-4), (-10,18,0), anterior mid-cingulate cortex (aMCC) (-10,10,48) 

and bilateral dorsolateral cortex (-46,8,24), (44,6,32).  Consistent with our first hypothesis 

using the ROI approach, striatal activation to reward symbols were significantly blunted in 

unmedicated MDD in right NAc (12,10,-8), t(25.54)=2.907, p=0.007 with a trend for left NAc 

(-12,10,-8), t(22.80)=1.953, p=0.063 (Fig. 2A).  Using voxel-based methods not confined to 

the NAc, we found significantly blunted activation in left (-22,14,-16) and right striatum 

(12,4,-4), (22,26,10) (Fig. 2B).  This is consistent with our independent studies of chronically 

medicated patients with treatment-resistant MDD (Gradin et al., 2011; Johnston et al., 

2015; J. D. Steele, Kumar, & Ebmeier, 2007) and other reports from independent groups 

(e.g. Keren et al., 2018). 

 

Reward value encoding 

At the fractal presentation time, the estimated value of the presented fractal was used as a 

parametric modulator at the first level. Single group second level analyses showed positive 

encoding of reward value (activation) in controls (Fig. 3A) in areas including hippocampus (-

38,-28,0), (46,-26,-2) and rostral ACC (rACC) (14,50,-2) and negative encoding (deactivation) 

of reward value in MDD subjects (Fig. 3B) in hippocampus (-30,-30,-2), (36,-26,-2) and 

rACC(14,50,-10). A subsequent two-group comparison revealed significantly larger positive 

value encoding in controls compared to MDD participants (Fig. 3C and 3D) in hippocampus (-

36,-32,2), (48,-26,4) and rACC (14,50,-8).  Within MDD subjects only, there was a significant 

negative correlation of BDI illness severity with extracted contrast-betas from the rACC (r=-

0.59, p=0.009; Fig. 3E) but not hippocampus (r=-0.02, p=0.931) 
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    In addition to classical statistical inference it is important to test for individual patient 

predictive accuracy (J.D. Steele & Paulus, 2019).  Logistic regression with leave-one-out 

cross-validation was used to classify participants as MDD or controls using median beta 

values of the value encoding contrast at rACC and left hippocampal ROIs. The classifier 

achieved an individual subject accuracy of 79% (area under the ROC curve AUC = 0.86; see 

Supplementary Materials). 

 
Decision making 

The decision event time was associated with strong activation in regions including the aMCC 

(-2,14,50) and bilateral anterior insula (-28,22,-2), (32,26,-6) across both groups (Fig. 4A), a 

pattern consistent with activation of cognitive control processes as identified in a large 

meta-analysis (Shackman et al., 2011). Bilateral insula, subgenual anterior cingulate cortex (-

2,28,-2) and aMCC (-12,20,32) (22,28,42) activity was significantly increased in MDD subjects 

compared to controls (Fig. 4B), with the aMCC region (-6,26,36) correlating positively with 

BDI illness severity scores within the MDD group alone. 

    The difference between the value of the chosen option and the value of the alternative 

option was used as a parametric modulator at the first level. In the softmax decision rule, 

the value difference is used together with the beta inverse temperature parameter to 

calculate choice probabilities. Across participants, we observed a significant negative 

correlation of value difference encoding in regions including the aMCC region (-14,16,48), 

(12,24,28) (Fig. 4C). In addition, a negatively correlated absolute value difference encoding 

signal was also observed in regions including aMCC (-4,24,46), (10,10,46) (Fig. 4D) and a 

positively correlated absolute value difference signal was observed in regions including the 

rACC (-16,42,8), (-4,50,-14), (24,38,4) (Fig. 4E). Mean value difference and mean absolute 

value difference were weakly correlated across participants (r=0.36, p=0.037). We did not 

identify a significant difference between groups for either value encoding parameter within 

these dorsal and rostral cingulate regions (see Supplementary Materials). 

 

Event-related connectivity 

The aMCC region from the decision event time activation across groups was used as a seed 

region for a gPPI analysis, to test whether this region exhibited abnormal event-related 

connectivity in MDD compared to controls. Significantly weaker connectivity at the decision 



12 
 

time between the dACC and posterior, mid and rostral cingulate cortex regions (-12,42,4), 

(8,50,8) in MDD was identified as shown in Fig. 4F. 

 

Post hoc correction for grey matter variation 

Because there is evidence for hippocampal volume reductions in recurrent depression 

(Schmaal et al., 2017; Schmaal et al., 2015) an additional analysis was done (see also 

Supplementary Materials) to test for the effect of grey matter variation on fMRI findings. 

For every participant the estimated forward deformation field was used to normalise the 

grey matter probability image, thereby obtaining for each resampled voxel an estimate of 

the probability that a voxel was grey matter. Beta values in the hippocampal and rostral 

anterior cingulate of the fMRI contrast images were then multiplied by these grey matter 

probabilities and two group t-tests used to test for differences. The results still showed 

significant fMRI group differences:  left hippocampus t(21.36)=3.313, p=0.003;  right 

hippocampus t(31.03)=2.501, p=0.018; rACC t(31.19)=2.890, p=0.007. 
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Discussion 

To our knowledge, this is the first study to test hypotheses about abnormal reward value 

encoding and event-related connectivity in patients with unmedicated MDD.  In our detailed 

behavioural analyses (Rupprechter et al., 2018) we reported impaired behavioural 

performance in MDD caused by impairments in both value learning and decision phases of 

our Pavlovian task; MDD subjects also showed lower memory of observed reward and had 

an impaired ability to use internal value estimations to guide decision making (Rupprechter 

et al., 2018).  Here we sought to identify the neural substrates of these behavioural 

abnormalities. 

    Consistent with our first hypothesis, we found that the striatal reward activation was 

blunted as was the reward signal in an independently defined NAc ROI of unmedicated MDD 

subjects.  This is consistent with our previous independent studies on chronically medicated 

treatment-resistant MDD (Gradin et al., 2011; Johnston et al., 2015; J. D. Steele et al., 2007) 

and reports by independent groups (Keren et al., 2018; Zhang, Chang, Guo, Zhang, & Wang, 

2013).  Whilst the region is often referred to generically in the literature as the ‘striatum’, 

which includes the NAc and caudate, the region of significantly blunted reward activation 

during our Pavlovian task also prominently included the region between the two NAc (Fig. 

2B) which is the septum (Mai, Matjtanik, & Paxinos, 2015).  This structure is part of the 

septo-hippocampal system which is strongly implicated in anxiety and in the action of 

antidepressant and anxiolytic medication (Gray & McNaughton, 2000).  Notably, using a 

very different instrumental task to study an independent group of treatment-resistant 

medicated patients with MDD, we also observed septal reward signal blunting and similarly 

asymmetric blunting of the NAc (Fig. 3B; Johnston et al., 2015).  Further study of septal 

reward response blunting in MDD is indicated. 

    Consistent with our second hypothesis, we found brain regions with decreased reward 

value signal encoding in MDD, in particular hippocampus and rACC.  We have previously 

reported decreased reward value encoding in the hippocampus of an independent group of 

chronically medicated patients with treatment-resistant MDD using an instrumental 

learning task (Gradin et al., 2011) and as noted above, there is strong evidence for 

hippocampal abnormalities in treatment-resistant and recurrent MDD (Johnston et al., 

2015; Schmaal et al., 2015).  Here, using a novel Pavlovian reward task with unmedicated 
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MDD subjects, we report positive reward value encoding in the hippocampus of controls 

and negative reward value encoding of reward value in MDD.  Interestingly, a recent 

Pavlovian study using aversive stimulus learning reported positive  encoding of an aversive 

conditioned stimulus signal in the habenula of controls and  negative encoding in MDD 

(Lawson et al., 2017).  

    Recent meta-analyses and reviews have provided substantial evidence for the 

involvement of regions in the prefrontal cortex (PFC) including the rACC in the encoding of 

reward value (Bartra et al., 2013; Chase et al., 2015). The ventromedial PFC (vmPFC) is 

thought to be a key region involved in value-based decision making (Glascher, Hampton, & 

O'Doherty, 2009; Treadway et al., 2012).  Notably, Glaescher and colleagues reported that 

the vmPFC encoded value signals from a computational model in addition to the amygdala-

hippocampal complex, although these value signals were related to actions and expected 

outcomes (Glascher et al., 2009).  Reduced expected reward value signals have previously 

been reported in the vmPFC of suicide attempters (Dombrovski et al., 2013).  Importantly 

and consistent with our third hypothesis, we found a significant negative correlation 

between illness severity and rACC value encoding within MDD subjects alone.  

Consequently, there is considerable evidence for reward value encoding in the hippocampus 

and vmPFC of healthy subjects, and in addition to the present study, evidence for blunted 

reward value encoding in two independent studies: on MDD (Gradin et al., 2011) and 

attempted suicide (Dombrovski et al., 2013).  This suggests these two regions are part of the 

neural substrates of impaired value learning observed in our behavioural analyses 

(Rupprechter et al., 2018). 

    The aMCC has been highlighted as crucial for decision making in a large meta-analysis of 

healthy subjects (Shackman et al., 2011), and it has been suggested that abnormalities of 

anterior cingulate reward-linked computational function and connectivity could explain core 

symptoms in a variety of disorders including MDD (Holroyd & Umemoto, 2016).  Consistent 

with this, we have reported decision-making abnormalities in treatment-resistant MDD 

patients receiving aMCC therapeutic lesions (Tolomeo et al., 2016) and evidence for Electro-

Convulsive Therapy therapeutically altering aMCC connectivity in an independent group of 

patients with treatment-resistant MDD (Perrin et al., 2012).  Also consistent with our second 

hypothesis, in the present study we found abnormally increased activation in MDD and 

encoding of a value difference signal in the aMCC region at the decision time, linking our 
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behavioural model (Rupprechter et al., 2018) to localised brain function.  Consistent with 

our fourth hypothesis, event-related connectivity analysis at the decision time revealed 

reduced connectivity between the aMCC and more rostral ACC regions, in MDD compared 

to controls.  An influential theory of aMCC function linking cognitive control, valuation and 

motivation, proposes that the underlying function of the aMCC is to determine how much 

control to allocate (Shenhav, Botvinick, & Cohen, 2013).  Consistent with our interpretation, 

the theory posits that the aMCC receives value-representation inputs from regions such as 

the vmPFC which are used to monitor outcomes and adjust the level of control.  There is 

evidence that abnormal anterior cingulate cortex maturation during adolescence 

contributes to the development of MDD reflected by inflexible aMCC connectivity (Ho et al., 

2017).  The present work suggests this could be related to impairment in the 

communication of value estimates from the rACC to the aMCC where these estimates are 

used to guide decision making. 

    A large meta-analysis of subcortical regions found decreased hippocampal volume in 

recurrent depression (Schmaal et al., 2015) and a later meta-analysis reported a range of 

cortical structural abnormalities including the rACC (Schmaal et al., 2017) although see 

(Shen et al., 2017).  We therefore did additional analyses addressing the possibility of 

structural differences influencing our results (Results and Supplementary Materials).  The 

value encoding signals remained significantly different between groups and our conclusions 

are unaltered.  Reward and loss have different value functions with overlapping but 

different neural substrates which are relevant for MDD (Johnston et al., 2015) but we could 

not address this using our current paradigm, although see (Lawson et al., 2017).  A possible 

limitation of our analyses is that the voxel threshold p<0.05 was within the permitted range 

but not the ideal range.  We therefore repeated the analyses using a more stringent voxel 

threshold p<0.01 and found the results analogous with the exception of the encoding of 

negative value difference across subjects which was not significant (see Supplementary 

Materials). 

Conclusions 

A close link between emotional experience and valuation has been proposed (Dolan, 2002).  

Diverse symptoms of MDD can be explained within a decision-theoretic framework in which 

abnormal valuation plays a central role (Q. Huys et al., 2015; Q. Huys & Renz, 2017).  We 

reported behavioural evidence for abnormal reward value learning and decision making in 
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depression (Rupprechter et al., 2018) and here we identified the neural substrates of these 

abnormalities as being the striatum, septo-hippocampal system and anterior cingulate, with 

both reward value encoding and event-related connectivity being abnormal.  This supports 

the theory that abnormally biased neural valuation plays a central role in MDD, and suggests 

there is impaired communication between the neural substrates of valuation and decision 

making in depression. 

    To the extent that emotion reflects valuation, abnormal valuation could explain abnormal 

emotional experience in MDD, reflect a core pathophysiological process and be a target of 

treatment.  Finally, MDD may not be the only common psychiatric illness associated with 

abnormal neural valuation, as there is also evidence for schizophrenia (Gradin et al., 2011) 

and addiction (Redish, 2004; Redish, Jensen, & Johnson, 2008), implying different psychiatric 

disorders may reflect different disorders of neural valuation. 
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Table 1. Clinical characteristics of subjects.  

 

Group No. subj. Age range Sex (F/M) BDI NART 

Patients 18 18 - 33 15/3 25.9 ± 12.9 45.8 ± 4.5 

Controls 16 17 - 41 10/6 5.4 ± 5.6 47.3 ± 3.6 

Statistical 

comparison 

 z = -1.27 

p = 0.205 

z = 1.37 

p = 0.169 

z = 4.22 

p < 0.0001 

z = -1.01 

p = 0.313 

 

Beck Depression Inventory (BDI); National Adult Reading Test (NART). Data is displayed as n or mean 

± standard deviation.  For more details see Supplementary materials. 
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Fig. 1 Pavlovian learning paradigm.  Participants passively observed different fractals 

followed by reward or no reward.  From these observations they estimated the probability 

of reward for each fractal then choose the higher of their estimated fractal value or an 

explicitly presented value. 

 
Fig. 2 Reward events. (A) Reward activation in nucleus accumbens ROIs, (B) decreased 

reward activation in MDD participants compared to healthy controls (HC) in the striatum.  

All regions significant at p<0.01 whole-brain corrected. 

 
Fig. 3 Reward value encoding at fractal presentation time. (A) Positive value encoding 

within healthy controls. (B) Negative value encoding in depressed participants. (C) Larger 

value encoding in healthy controls (HC) compared to MDD participants in hippocampus and 

rostral ACC.    All regions significant at p<0.01 whole-brain corrected.  (D) Group comparison 

of value encoding in hippocampal ROI, (E) Within MDD subjects negative correlation 

between BDI illness severity and rAC value encoding (r=-0.59, p=0.009). All regions 

significant at p<0.01 whole-brain corrected. 

 

Fig. 4 Activation during decision making. (A) Activation across all participants (p<0.05 FWE 

threshold), (B) Larger activations in MDD compared to controls, (C) Negative value 

difference encoding signal across participants, (D) Negative absolute value difference 

encoding signal across participants, (E) Positive absolute value difference encoding signal 

across participants, (F) Decreased event-related connectivity in depression between dorsal 

cingulate region and other cingulate regions.  All regions significant at p<0.01 whole-brain 

corrected. 
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Supplementary Materials 
 
Abnormal Reward Valuation and Event-Related Connectivity in Unmedicated 
Major Depressive Disorder 
 

Experiment Details 

Written informed consent was obtained then, questionnaires and an interview conducted which 

lasted an hour, then task training for 10-20 minutes followed by 50 minutes scanning then 

debriefing lasting 5 minutes. Participants were paid £20 plus a performance dependent bonus of 

up to £10. Final scores were converted into a percentage. 

    Subjects passively observed fractals; each was always followed by either a reward symbol (£) 

indicating ‘value’ or a blank screen indicating ‘no value’.  After each fractal was observed on four 

occasions it appeared, at some later time, in a single decision trial where subjects were asked to 

choose the higher reward probability; their internally estimated value for the fractal or an explicit 

numeric value. Either option could have a value 10% 20% or 30% higher than the other or equal 

value. This means a total of 240 fractals (60x4) were observed with 60 decisions being made. 

Fractals were presented for 3 to 4 seconds. Outcomes were presented for 2.5 to 3.5 seconds. 

Decisions had to be made within a 5 second response window. Null events (blank screens) and null 

decisions (requiring a button press in response to a cross in the centre of the screen) were 

randomly interspersed throughout the experiment.  The sequence of observations and decisions 

were interleaved in a pseudo-random order and identical for all subjects. The study was divided 

into 4 sessions of 15 min each between which there were periods where participants could briefly 

rest. Each session was split into 3 blocks and during each block participants made 5 decisions. 

Participants did not receive feedback during the task but were told their performance scores 

would be converted into money they would receive at the end of the experiment. The task is 

summarised in Figure 1 (main text). 

 

Behavioural modelling 

We recently published a detailed computational modelling analysis of participants’ behaviour on 

the task (Rupprechter et al., 2018). Here we summarise the approach and main findings. We fitted 

seven different models, representing distinct hypotheses about participants’ decision-making, to 

the data. All models assume that participants estimate an internal value for each fractal stimulus 

and compare this internal value to the explicit value at decision time. To model the probability of 

choosing an action, the value difference was passed into a standard softmax function, which also 
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included an inverse temperature parameter β. Higher values of β lead to more deterministic 

decision-making. The parameter can be interpreted as an individual’s ability to use their internal 

value estimations to make decisions. 

    Four different variations of reinforcement learning (RL) models were defined. These models 

incorporate trial-by-trial prediction errors and learning rate parameters. After an outcome is 

observed, the expected value of the fractal that was displayed is updated by adding the prediction 

error (difference between expected value and reward outcome coded as 1 or 0) scaled by the 

learning rate. The initial value was either set to a fitted initial value parameter (in two of the RL 

models) or fixed at 0.5 corresponding to a prior belief that reward was equally likely from either 

option. Two models included separate learning rates for separate reward outcomes, aiming to test 

whether learning would be different following rewards versus no-rewards. We also fitted the 

winning model of the original study by Stankevicius et al. (2014) which tested the Bayesian 

observer hypothesis. This model assumed that participants would count the number of times each 

fractal was followed by reward and combine this evidence with a prior belief about the probability 

of rewards associated with fractals. The model does not explicitly model the observation phase of 

the experiment and instead assumed at the decision time perfect counting had occurred. To 

overcome these limitations, we fitted two additional models (‘Leaky’ and ‘Leaky-ρ’) which also 

assumed participants would count the number of times a fractal was followed by reward, but this 

was modelled on a trial-by-trial basis. In addition, a memory or discounting parameter was 

included, which assumed that subjects forgot about some of the previously observed values. 

    Model fitting was based on maximum a posteriori estimates, which included an empirical 

Gaussian prior estimated from the data. Parameters were initialised with maximum likelihood 

estimates and then an expectation-maximization procedure applied to iteratively update these 

estimates until convergence. The integrated Bayesian Information Criterion (iBIC) was used to 

identify the model that best fit the data while also penalizing for model complexity.  

    The best fitting model according to iBIC was the Leaky model, which updated the value for 

fractal i on trial t as where A is a memory parameter and smaller A reflected increased forgetting 

or retrospective discounting, and r was unity if a £ reward symbol was observed and zero  

otherwise. 

 

As above, the probability of choosing a fractal i was calculated using a softmax function 

incorporating estimated value (V) and explicitly presented values (phi) 



 

 

 

where f(x) = x/4 is a transformation of the internal value estimate comparable to the explicitly 

displayed reward probability. 

    We identified differences between the groups in both memory parameter (z = −2.15, p = 0.031; 

A patients μ ± σ =0.90 ± 0.04, median = 0.91; A controls μ ± σ = 0.92 ± 0.09, median = 0.96) and 

softmax  β parameter (z = −2.34, p = 0.019; β patients μ ± σ = 4.67 ± 1.45, β controls μ ± σ = 5.89 ± 

1.33). This indicates MDD patients discounted more of their estimated values and found it harder 

to follow their internal value estimations. 

 

Logistic Regression 

Logistic regression models were fitted using glmfit in MATLAB to the data of all participants except 

one, which was then used to predict the group of the left-out participant (using glmval and a 

threshold of 0.5).  This was repeated all participants. Overall, we were able to classify 27 

participants (14 patients, 13 controls) correctly, which corresponds to an accuracy of 79% (27 out 

of 34, precision=76%, recall=81%). The area under the ROC curve, for which the p threshold was 

varied between 0 and 1 and true and false positive rates were calculated, was approximately 0.86 

(Figure S5). 

 

Value difference signal encoding: Group comparison 

Beta values were extracted from the first level contrast images of each participant and then 

compared between two groups. We did not find a group difference with betas extracted from a 

5mm sphere within the aMCC region identified as being active during decision making (-2,14,50) 

for value difference (t(29.09)=-0.30, p=0.764) or absolute value difference (t(29.28)=-0.990, 

p=0.330) signal encoding. We also did not find a group difference of value difference encoding in 

slightly different aMCC ROIs ([-14,16,48]: t(23.47)=-1.33, p=0.197; [12,24,28]: t(24.32)=0.42, 

p=0.682). Neither did we find a group difference of absolute value difference encoding in different 

aMCC ([-4,24,46]: t(23.92)=-0.69, p=0.498; [10,10,46]: t(28.49)=-1.55, p=0.132) or rACC ([-16,42,8]: 

t(29.72)=-1.21, p=0.237; [-4,50,-14]: t(29.04)=-1.86, p=0.074) regions of interest. 

  



Connectivity analysis 

The conditions included in the gPPI analysis were outcome time, fractal presentation time, 

decision prompt time, button press time, and null events.  Event-related connectivity methods are 

not as well established as some other areas of neuroimaging, so we also explored beta series 

correlation analysis (BASCO toolbox; Göttlich et al. 2015), as an additional method to infer event-

related functional connectivity between a dACC seed region and other brain regions. 

Encouragingly, we obtained a similar result as gPPI, with controls showing stronger connectivity 

between dACC and rACC than patients at the decision-time (Figure S6). 

 

Structural differences 

To address the possibility of structural differences influencing our results (see discussion in main 

text), we performed additional analyses. For every participant, we obtained a grey matter 

probability image (c1*.nii in SPM) during preprocessing of the T1 structural image and an 

estimated forward deformation field image (y_*.nii in SPM) used to normalise the functional 

images.  The deformation field was used to normalise the grey matter probability image, including 

a resampling of voxels in the same way as was done for the functional scans; giving for each 

resampled voxel, an estimate of the probability that a voxel was grey matter. We then multiplied 

beta values in the hippocampal and rACC ROIs (5mm) of contrast images for value encoding at 

fractal presentation time by these grey matter weights.  From each ROI the mean values were 

calculated and between group Welch’s t-tests done. The results still showed significant group 

differences after these adjustments (L hippocampus (-36,-32,2) t(21.36)=3.313, p=0.003;  R 

hippocampus (48,-26,4) t(31.03)=2.501, p=0.018; rACC (14,50,-10) t(31.19)=2.890, p=0.007) 

 

Interpretation of Results 

We were cautious in interpreting our results:  i) At a behavioural level we found decreased ‘value 

memory’ and at an imaging level we found decreased ‘value encoding’ in the brain. Theories of 

decision making posit that value estimations are used as the basis of decision making.  Therefore, 

altered value encoding could have been the cause of the observed behavioural abnormalities.  

However, as both behaviour and brain encoding were abnormal we were cautions about a 

possible circular argument in interpreting our data further than we have in the main text.  ii) 

Regarding abnormalities in decision-making, we made the prediction that we would find both an 

activation across participants and a group difference in cortical signals at the decision time. We 

further hypothesized a signal encoding ‘value difference’ because in our behavioural model, this is 



the variable which enters at the decision event time. Importantly though, these variables are 

related. While it would be possible to test for a direct correlation between the signal encoding and 

estimated inverse temperature parameters at the second level, interpretation with our data would 

be difficult. 

 

Control analyses 

We repeated our analysis using a decreased individual voxel threshold (p<0.01) for multiple 

comparison corrections and reproduced the figures from the main text (Figures S1-S4). Results 

were broadly similar, with the exception of negative value difference encoding signal across 

participants which was not significant (Figure S4). Additional Monte Carlo simulations showed that 

with an assumed individual voxel type 1 error of p=0.01 a smaller cluster size of k=102 would be 

needed to correct for multiple comparisons at the same cluster correction threshold of p0.01. The 

script (cluster_threshold_beta.m) can be found on the author’s webpage 

(https://www2.bc.edu/sd-slotnick/scripts.htm). 

 

 

 

 

 

 

Figure S1.  Decreased reward activation in MDD participants compared to healthy controls in the 

striatum. Display threshold p0.01 and k108; c.f. Figure 2B. 

 

https://www2.bc.edu/sd-slotnick/scripts.htm


 

 

Figure S2.  Reward value encoding at fractal presentation time. (A) Positive value encoding within 

healthy controls. Note that the cluster size here is k=66; c.f. Figure 3A. (B) Negative value encoding 

in depressed participants. Display threshold p0.01 and k108; c.f. Figure 3B. (C) Larger value 

encoding in healthy controls compared to MDD participants in hippocampus. Display threshold 

p0.01 and k108; c.f. Figure 3B – left. (D) Larger value encoding in healthy controls compared to 

MDD participants in rostral ACC. Note that the cluster size here is k=91; c.f. Figure 3B – right.  



 

Figure S3.  Activation during decision making. (A) Larger activations in MDD compared to controls. 

Note that the cluster size here is k=103; c.f. Figure 4B. (B) Negative absolute value difference 

encoding signal across participants. Display threshold p0.01 and k108; c.f. Figure 4D. (C) Positive 

absolute value difference encoding signal across participants. Note that the cluster size here is 

k=97 and the cluster size for the second cluster further down (ventral) is k=144; c.f. Figure 4E. (D) 

Decreased event-related connectivity in depression between dorsal cingulate region and other 

cingulate regions. Display threshold p0.01 and k108; c.f. Figure 4F.  



 

 

 

 

Figure S4.  Negative value difference encoding signal across participants was not significant in the 

anterior mid-cingulate region at an individual voxel threshold of p0.01; c.f. Figure 4C. 

  



Figures 

 

 

Figure S5.  The ROC curve (AUC =0.86) of our logistic regression classifier. 

 

 

 

Figure S6. Functional connectivity. Significantly higher functional connectivity in HC compared to 

MDD subjects between a dACC seed region with rostral ACC and PCC, obtained using beta series 

correlations (Göttlich et al., 2015). 

 

  



Tables 
 
 

Questionnaire Patients Controls 

BDI 25.9 ± 12.9 5.4 ± 5.6 

DSAB 15.1 ± 4.0 16.9 ± 2.4 

HAD-A 12.7 ± 5.1 4.3 ± 2.5 

HAD-D 8.6 ± 4.6 1.8 ± 2.0 

HAMA 18.8 ± 6.9 1.8 ± 2.7 

LOT-R 9.0 ± 5.1 18.4 ± 3.1 

MADRS 18.8 ± 6.9 1.8 ± 2.7 

NART 45.8 ± 4.5 47.3 ± 3.6 

RSE 13.3 ± 6.9 23.7 ± 4.6 

SHAPS 38.6 ± 8.7 49.2 ± 5.9 

Agreeableness 39.6 ± 6.5 45.6 ± 5.7 

Conscientiousness 36.4 ± 10.0 44.8 ± 7.2 

Extraversion 31.2 ± 7.6 43.3 ± 4.2 

Neuroticism 46.9 ± 7.1 31.4 ± 6.9 

Openness 41.5 ± 5.4 45.8 ± 5.3 

 

Table S1. Clinical characteristics of participants. BDI = Beck Depression Inventory; DSAB = Digit 

Score Part B; HAD = Hospital Anxiety and Depression Scale; HAMA = Hamilton Anxiety Rating Scale; 

LOT-R = Life Orientation Test – Revised; MADRS = Montgomery-Åsberg Depression Rating Scale; 



NART = National Adult Reading Test; RSE = Rosenberg Self-Esteem Scale; SHAPS = Snaith-Hamilton 

Pleasure Scale; Scores displayed as mean ± std. 

  



Reward response 
 

Regions t z 
MNI coordinates [mm] 

Voxels in 
cluster 

x y z  

 
Controls + Patients 

striatum, 
midcingulate, 
dorsolateral 
cortex, 
occipital lobe 

12.19 7.39 -14 -90 2 94077 

4.89 4.20 10 12 -4 

4.44 3.89 -10 18 0 

8.28 6.01 -10 10 48 

8.25 6.00 -46 8 24 

7.14 5.48 44 6 32 

 
Controls > Patients 

Striatum, 
nucleus 
accumbens 

4.58 3.99 22 26 10 27510 

4.48 3.92 -22 14 -16 

4.45 3.9 -48 -36 30 

Cerebellum 4.44 3.89 -30 -52 -42 1691 

2.9 2.71 8 -70 -28 

2.83 2.65 -28 -64 -52 

thalamus 3.4 3.12 2 -32 2 357 

2.31 2.21 10 -24 -2 

2.31 2.21 20 -18 -2 

Cerebellum 3.05 2.84 36 -52 -44 461 

2.55 2.42 4 -58 -48 

2.51 2.38 40 -58 -48 

FFA 3.03 2.82 48 -60 -18 229 

2.48 2.36 46 -52 -22 

2.28 2.18 46 -70 -16 

Auditory 
cortex / insula 

3.01 2.8 -38 -18 4 
127 

   
  

    

       

 
  



Value encoding 
 

Regions t z 
MNI coordinates [mm] 

Voxels in 
cluster 

x y z  

 
Controls (activations) 

Occipital lobe 6.29 4.34 -16 -102 4 748 

Precuneus, L 
hippocampus, 
caudate, 
prefrontal cortex 

5.7 4.1 8 -58 40 16096 

5.62 4.06 -8 -54 52 

5.58 4.04 0 -52 48 

Occipital lobe 

4.19 3.36 26 -96 -4 337 

2.91 2.55 34 -94 4 

2.74 2.43 10 -88 -6 

Supramarginal 
gyrus 

3.98 3.24 58 -44 32 645 

3.27 2.8 48 -46 36 

2.3 2.09 40 -52 32 

R Supp motor 
area 

3.66 3.04 16 -2 56 183 

2.41 2.19 16 -6 68 

R temporal 
gyrus, R 
hippocampus 

3.61 3.02 66 -20 -4 744 

3.51 2.95 34 -50 10 

3.06 2.65 66 -10 0 

brainstem 

2.36 2.14 10 -38 -46 160 

2.32 2.11 0 -32 -54 

2.16 1.99 0 -20 -36 

 
Patients (deactivations) 

Occipital lobe, 
hippocampus 

8.38 5.21 18 -88 18 20400 

8.07 5.11 38 -68 -8 

5.47 4.1 -2 -86 -6 

Medial 
prefrontal 
cortex, rostral 
ACC 

4.16 3.41 14 50 -10 1035 

3.3 2.86 2 34 -18 

3.01 2.66 2 24 -22 

Motor cortex 

3.68 3.11 -38 -8 36 730 

3.09 2.72 -4 -16 54 

2.7 2.43 -48 -8 34 

Motor cortex 

3.6 3.06 16 -26 68 898 

3.51 3 20 -30 54 

3 2.65 4 -26 70 

R amygdala 
3.55 3.03 30 8 -18 213 

1.95 1.83 30 -2 -16 



Brainstem 
3.2 2.79 6 -16 -42 108 

2.42 2.22 -2 -18 -36 

Brainstem 2.64 2.38 2 -38 -48 119 

Corpus callosum 
2.57 2.33 8 -2 28 115 

2.01 1.88 -4 -6 26 

 
Controls > Patients 

Hippocampus, 
precuneus 

4.88 4.19 -36 -32 2 18480 

4.57 3.98 50 -4 18 

4.4 3.86 -32 -68 16 

Medial 
prefrontal 
cortex, rostral 
ACC, R anterior 
insula 

3.73 3.37 14 50 -8 2169 

3.61 3.28 28 12 44 

3.41 3.12 28 20 12 

Precuneus 

2.92 2.73 -10 -58 48 161 

2.06 1.98 4 -64 54 

2.03 1.96 -4 -66 56 

Brainstem 2.84 2.66 0 -20 -38 122 

L anterior insula 

2.65 2.5 -28 12 16 109 

2.33 2.23 -36 18 16 

2.17 2.09 -30 26 18 

Brainstem 2.63 2.49 4 -38 -48 108 

 
  



Decision making 
 

Regions t z 
MNI coordinates [mm] 

Voxels in 
cluster 

x y z  

 
Controls + Patients 

Anterior insula, 
dorsal ACC (aMCC), 
striatum 

16.68 Inf 32 26 -6 111774 

14.21 Inf 16 0 -6 

14.07 Inf -28 22 -2 

14.74 Inf 26 -66 -4 

14.61 Inf -16 -68 12 

14.02 Inf -26 -62 -8 

12.91 7.59 -2 14 50 

 
Patients > Controls 

Insula 

4.21 3.73 8 0 26 1185 

3.26 3.01 34 -22 24 

2.89 2.7 -8 -4 22 

sgACC 4.06 3.62 -2 28 -2 176 

Occipital lobe 

3.44 3.15 -34 -88 24 384 

2.94 2.74 -48 -74 26 

2.44 2.32 -36 -76 44 

insula 

3.3 3.04 -38 -8 20 675 

3.23 2.99 -36 -26 22 

3.14 2.91 -44 -24 20 

(para)hippocampus, 
brainstem 

3.25 3 -20 -28 -18 950 

3.19 2.95 14 -36 -20 

3.19 2.95 12 -22 -16 

dACC 

3.21 2.97 22 28 42 741 

3.11 2.88 -12 20 32 

3.01 2.81 6 38 34 

PCC 

3.14 2.91 -2 -56 28 1651 

2.93 2.74 6 -52 18 

2.9 2.71 2 -60 22 

Supp motor area 
3.09 2.87 -8 -18 62 157 

1.96 1.9 4 -12 64 

Temporal lobe, 
hippocampus 

3.07 2.86 -22 -34 4 154 

2.05 1.98 -12 -32 12 

Temporal lobe, 
hippocampus 

3.06 2.85 42 -34 4 534 

2.84 2.66 40 -52 -6 

2.56 2.42 28 -36 0 



Occipital lobe 2.92 2.73 42 -60 28 113 

Occipital lobe 

2.76 2.6 -40 -70 2 266 

2.39 2.28 -34 -76 -4 

1.93 1.87 -40 -58 -12 

Prefrontal cortex 

2.72 2.57 54 24 32 245 

2.38 2.26 36 6 34 

2.16 2.08 52 14 40 

Temporal lobe 

2.68 2.52 -42 -34 -4 456 

2.67 2.52 -36 -44 -14 

2.24 2.15 -38 -46 -6 

Occipital lobe 2.6 2.46 36 -70 -10 121 
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