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Current theories suggest individuals with methamphetamine use disorder (iMUDs) have difficulty considering long-term outcomes
in decision-making, which could contribute to risk of relapse. Aversive interoceptive states (e.g., stress, withdrawal) are also known
to increase this risk. The present study analyzed computational mechanisms of planning in iMUDs, and examined the potential
impact of an aversive interoceptive state induction. A group of 40 iMUDs and 49 healthy participants completed two runs of a
multi-step planning task, with and without an anxiogenic breathing resistance manipulation. Computational modeling revealed
that iMUDs had selective difficulty identifying the best overall plan when this required enduring negative short-term outcomes – a
mechanism referred to as aversive pruning. Increases in reported craving before and after the induction also predicted greater
aversive pruning in iMUDs. These results highlight aversive pruning deficits as a novel mechanism that could promote poor choice
in recovering iMUDs and create vulnerability to relapse.
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INTRODUCTION
Individuals with methamphetamine use disorder (iMUDs) suffer
devastating physical and psychological consequences [1] and rates
of overdose and mortality have increased in recent years [2, 3]. The
growing prevalence of this disorder, poor treatment outcomes, and
high rates of relapse all necessitate a better understanding of its
etiology and maintenance factors [4, 5]. In particular, decision
mechanisms promoting continued use despite negative conse-
quences remain inadequately understood.
To date, research examining decision-making in iMUDs and

other stimulants has found greater impulsivity [6, 7], impaired
inhibitory control, increased risk-taking [8, 9], and elevated delay-
discounting compared to non-users [10, 11], which may jointly
reflect an impaired ability to consider potential consequences
before choices are made. This also suggests low levels of cognitive
reflectiveness (i.e., the tendency to stop and “think things through”
before responding [12–14]), although the explanatory power of
reflectiveness measures in this population remains to be
examined. The substance use literature has instead tended to
focus on reward processing. For instance, one recent neuroima-
ging study in amphetamine users suggested greater anticipatory
processing for large rewards (right amygdala activation) compared
to non-users [15]. This exemplifies a large prior literature
suggesting decision-making in these individuals may be biased
toward large, immediate gains.
Computational approaches have allowed quantitative mathe-

matical modeling of these decision-making processes. Of greatest
relevance here, two broad classes of computational reinforcement
learning (RL) algorithms have been used to explain choice in

iMUDs (for reviews, see [16, 17]). Namely, model-free (MF)
algorithms assume decision-making operates through trial-and-
error action value learning based on observed outcomes (i.e.,
assuming no explicit future expectations). Model-based (MB)
algorithms instead assume decisions are made based on expected
future rewards. To date, MF explanations have received more
attention in experimental studies. These tend to attribute
maladaptive choice patterns to repeated positive outcomes
following drug use and negative outcomes associated with
withdrawal. On the other hand, MB approaches explain continued
use by assuming affected individuals overweight the expected
reward of use and underweight expected negative consequences
[18]. Investigations focused on distinguishing these algorithms
suggest a shift from reliance on MB to MF algorithms with
repeated use [19, 20]; yet, the mechanisms behind this shift, and
those underpinning MB deficits, remain largely unknown. In
particular, multi-step planning – a paradigmatic example of MB
decision-making – has received insufficient attention in empirical
studies and may be crucial for understanding these impairments.
Another factor known to promote poor choice is avoidance of

negative affect and the aversive interoceptive states linked to
stress and withdrawal [21–26]. Here, planning could be affected by
the initial discomfort expected under certain choices or might be
preferentially impacted by heightened negative states. For
example, some plans may not be given ample consideration if
expected short-term effects are negative (e.g., expected with-
drawal states), even if longer-term outcomes would be ideal (e.g.,
recovery). This difficulty considering distal outcomes of plans with
unpleasant short-term consequences is referred to as aversive
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decision tree pruning (AP) and appears to be a reflexive, Pavlovian
response [27]. However, potential moderators of this mechanism,
such as the aversive interoceptive states discussed above, are
currently unknown. The degree to which AP is relevant to iMUDs
in comparison to other potentially explanatory mechanisms – such
as reduced reward sensitivity or planning horizon (i.e., the overall
number of future steps one considers) – has also not been
thoroughly investigated.
Here we assessed multi-step planning in iMUDs during an

anxiogenic interoceptive perturbation protocol involving inspiratory
breathing resistance. We used computational modeling to assess
behavior on a previously validated planning task and compared
computational metrics of behavior (i.e., AP, planning horizon, and
reward sensitivity) between task runs under conditions with and
without the breathing perturbation, allowing assessment of the
effect of interoceptive/somatic state anxiety. Computational mea-
sures were also examined in relation to cognitive reflectiveness and
severity of drug-related consequences, withdrawal, and craving. Our
primary aims were to: (1) evaluate whether aversive state induction
moderated computational planning mechanisms, (2) differentiate
competing hypotheses regarding which computational mechanisms
were altered in iMUDs, and (3) evaluate whether differences in
computational planning mechanisms may be explained by trait
differences in cognitive reflectiveness and potentially predict
symptom severity.

METHODS
Participants
Data were collected at the Laureate Institute for Brain Research (LIBR) in
Tulsa, Oklahoma. Eligible participants came from the Tulsa community,
were 18–65 years old, weighed ≤250 pounds (due to equipment
limitations), and did not have a history of traumatic brain injury or
neurological disorders. Participants included healthy comparisons (HCs)
without any diagnosed psychiatric conditions or elevated symptom levels
(n= 49) and those diagnosed with amphetamine use disorder with
methamphetamine as a primary drug of choice (n= 40). Participants with
MUD were recruited from recovery centers in the Tulsa area within 45 days
of entry into treatment. A comorbidity breakdown is shown in
Supplementary Table S1.
A post-hoc power analysis confirmed that our sample size would

provide 80% power to detect hypothesized group differences (i.e., lower
AP in iMUDs than HCs), assuming a moderate effect size of Cohen’s
d= 0.54 and a false positive rate of p < 0.05.

Ethics approval and consent to participate
This study was carried out in accordance with the Declaration of Helsinki
and was granted ethical approval by the WCG Institutional Review Board
(#20211403), and all methods were performed in accordance with relevant
guidelines and regulations. Written informed consent was obtained from
all enrolled participants before their involvement in the study.

Measures
Descriptions of all relevant measures are provided in Supplementary
Materials. Measures of substance use severity (DAST: Drug Abuse Screen-
ing Test [28]), withdrawal symptoms (MAWQ: Methamphetamine With-
drawal Questionnaire [29]), and craving (DSQ: Desire for Speed
Questionnaire [30]) were collected only in iMUDs. As part of a larger
funded study, descriptive symptom severity data from these measures has
previously been reported to characterize an overlapping sample [31; also
see 32]. All analyses/results reported here in relation to computational/
behavioral measures are novel.

Experiment design
Aversive state induction and sensitivity protocol. In the present study, we
attempted to induce a temporary state of interoceptive/somatic anxiety by
altering breathing effort. Specifically, participants were asked to breathe
through a mask (Fig. 1a) with resistors that adjusted how difficult it felt to
inhale (in cmH2O/L/sec), while no resistance was applied to exhalation.
Before task performance, they were exposed to 6 increasing levels of

resistance (i.e., 0, 10, 20, 40, 60, and 80 cmH2O/L/sec) for 60 s each and
rated their anxiety immediately after each exposure on a scale from 0= no
anxiety to 10=maximum possible anxiety one could tolerate. This
“resistance sensitivity protocol” provided participants the chance to
become accustomed to the resistances and allowed assessment of
differences in sensitivity.
Participants also provided ratings of other secondary questions

pertaining to difficulty, valence, and arousal (see Supplementary Materials).
Please note that anxiety ratings in response to this series of resistance
levels have previously been described in conjunction with other data
gathered as part of a larger funded study [31]. However, all analyses of this
data in relation to computational measures described here are novel and
focused on distinct research questions.

Planning task. The behavioral task completed by participants in this study
was a modified version of the Sequential Planning Task previously described
and validated by Huys, Eshel [27] and used in subsequent studies [33, 34]; see
Fig. 1b. Six squares are presented during the task. Specific unidirectional
transitions from one square to another are allowed, each with associated
point values. Transitions and point values are memorized through extensive
pre-training and testing and are not shown during the task. Possible
transitions include small losses (−20), small gains (+20), large losses (−70), or
large gains (+140). The task structure was designed with these specific
transitions and associated point values to allow clear assessment of AP
behavior; i.e., in which individuals might choose to avoid paths with one or
two large losses, despite a subsequent large gain that made these paths
optimal overall. Starting positions vary trial-to-trial with allowable sequences
of 3, 4, or 5 moves on different trials, ensuring some trials have optimal paths
with large losses while other trials do not. Moves are planned during a 9 s
“planning period” and then entered in sequence during a subsequent 2.5 s
“response period.” Participants completed two runs of 72 trials. They also
completed a post-task assessment that evaluated memory retention for the
transitions and point values (see Supplementary Fig. S1 for more details).
However, this post-test was only added part-way into the study to help rule
out potential retention-based confounds; thus, data for this measure were
not collected in all participants (available data in HCs= 46, iMUDs= 36).

Procedure. For HCs, the planning task was completed on the second visit
of a larger funded study after they completed surveys and other activities
on Day 1. On Day 2, after filling out initial screening questions and passing
a urine drug analysis, HCs completed the task training and then performed
the planning task inside an MRI scanner for their two task runs (fMRI data
analysis for the larger study is in progress and will be reported elsewhere).
Due to scheduling limitations with collaborating recovery homes, task
training and performance for iMUDs were completed after a lunch break in
a one-day study visit that began with the same surveys and other study
activities that HCs performed on Day 1. Participants with MUD completed
their two task runs in a mock MRI scanner designed to best match task
environments for the two groups. All participants responded to a self-
reported anxiety question and the State-Trait Anxiety Inventory (STAI)
State Scale [35] before and after each run of the task. During one run of the
task (counterbalanced order), participants were continuously exposed to a
resistance level of 40 cmH2O/L/s, chosen to maintain a moderate (but
tolerable) anxiety level (i.e., based on previous work using this paradigm
[36] and confirmed by results of the sensitivity protocol). The other run was
completed with no resistance.

Computational modeling and model fitting
Model-based behavioral analyses were performed using the computational
modelling approach outlined in Lally, Huys [33] and conducted in MATLAB
(R2022a). Here, the value of each action sequence is based on the
expected reward at each transition. A discounting parameter 0≤γ≤1 down-
weights the influence of expected wins/losses at later steps in a given
sequence (higher values indicate less discounting). This parameter is
separated into two independent components: (1) γS applies to paths with
large-loss transitions (i.e., −70 points); and (2) γG applies to all other paths
(i.e., combinations of −20, +20, and/or +140 points), reflecting a general
planning horizon. The influence of path value differences on choice
probability is then scaled by a reward sensitivity parameter β ≥ 0, referred
to as RS below. As in prior work, model comparison using the Bayesian
Information Criterion (BIC) confirmed that this model outperformed
simpler models (i.e., that either discounted all paths equally or applied
no discounting; ΔBICs ≥ 2323; see Supplementary Fig. S2). Parameter
recoverability analyses were also performed to demonstrate sufficient

C.A. Lavalley et al.

2

Translational Psychiatry          (2025) 15:181 



accuracy in estimation. This was done by generating simulated behavior
within the model under representative combinations of parameter values,
estimating parameter values from this simulated behavior, and then
evaluating the magnitude of associations between the generative and
estimated values. Results of these analyses are reported in Supplementary
Materials (see Supplementary Fig. S3), confirming strong recoverability in
each case (rs ≥ 0.91).
To assess an individual’s propensity to avoid large-loss paths above and

beyond their general planning horizon, we calculated a difference score,
π=γG−γS, corresponding to their aversive pruning (AP) value. Note that, for
directional consistency, we report 1−γG (NLL-discounting) and 1−γS (LL-
discounting) below. See Supplementary Materials and Huys, Eshel [27],
Lally, Huys [33] for details regarding model fitting and model comparison.
To assess the unique contribution of AP to overall task performance,

simulations testing correlations between AP and overall points won on the
task are also shown at different fixed values for RS and NLL-discounting in
Supplementary Fig. S4. This confirmed that higher AP was associated with
worse task performance, confirming it can be interpreted as maladaptive in
this context.

Statistical analyses
Anxiety induction efficacy. All statistical analyses were performed using R
Studio version 4.2.0 [37].
We first confirmed the efficacy of the anxiety induction. Specifically, we

ran linear mixed effects models (LMEs; using the lmer function within the
lme4 R package [38]) with anxiety level as the outcome variable, and with
group (sum-coded: HCs=−1, iMUDs= 1), breathing resistance (no
resistance=−1, resistance= 1), and their interaction as predictors. This
was done both for self-reported anxiety across resistance levels during the
sensitivity protocol (coded as a continuous variable) as well as self-
reported anxiety and STAI state before and after the two task runs. We also

tested the effect of anxiety induction on craving by examining DSQ scores
before vs. after participants underwent the sensitivity protocol.

Computational parameters and task behavior. We then performed similar
LMEs predicting each model parameter with group, resistance condition,
and their interaction as predictors, while accounting for possible effects of
age (centered) and sex (sum-coded: male=−1, female= 1). These models
also included an interaction between resistance condition and self-
reported anxiety during the task to address the hypothesis that differences
in efficacy of the anxiety induction would impact task behavior.
Comparable LMEs replacing model parameters with model-free behavioral
metrics were also run.
Despite counterbalancing, we were also interested in assessing stability

in behavioral metrics between runs and understanding potential practice
effects. Thus, we carried out supplemental analyses of intraclass
correlations (ICCs) for each model parameter and tested further LMEs
including potential effects of run number (i.e., Run-1 vs. Run-2).

Secondary analyses of potential confounds. To rule out memory-related
confounds, LMEs predicting post-task memory accuracy were run using
question type (either memory of point values or transition directions),
point value (−70, −20, +140, +20), and group as predictors (all categorical
variables sum-coded).
As a further check, analyses of task performance (both model-based and

model-free metrics) were repeated while accounting for working memory
(NIH Toolbox List Sorting corrected score [39]) and accuracy on the post-
task memory test. These secondary analyses could only be performed in
the subset of participants for which these data were available, but helped
to confirm that group differences were not explained by differences in
either general cognitive ability or memory for different path values. The
post-task memory metric was calculated by taking the ratio between

Fig. 1 Study equipment, task interface, and computational model. a Equipment used for anxiety induction: silicon mask with adjustable
straps and single breathing port; resistors used to create resistance during inhalation and induce anxiety; two-way valve connected to the
mask, which ensures that inhalations engage one port while exhalations engage the other; tube connecting two-way valve to resistor.
b Graphical interface of the Planning Task. The blue button on the button box (center right) corresponds to transitions with blue arrows and
the yellow button corresponds to transitions with yellow arrows. c Computational model of (1) path valuation, (2) the probability of selecting a
particular action sequence, and (3) calculation of AP. Note that AP= π, NLL-discounting= 1-γG, and LL-discounting= 1-γS. d Example decision
tree based on an example starting position with point values for transitions and final path points demonstrating aversive pruning. Points for
the optimal path and the second-best path (indicated with thicker connecting lines) are shown in green and red, respectively. Colors of
connections indicate whether the move was performed using the left (blue) button or the right (yellow) button.

C.A. Lavalley et al.

3

Translational Psychiatry          (2025) 15:181 



accuracy on questions for large-loss transitions and accuracy on all other
questions (i.e., mirroring apparent AP effects). Additional secondary
analyses included (separate) possible effects of Group x Sex interactions,
length of abstinence, days since starting treatment, medication status,
specific substance use diagnoses, and continuous depression (PHQ-9:
Patient Health Questionnaire [40]) and anxiety (OASIS: Overall Anxiety
Severity and Impairment Scale [41]) levels.

Secondary dimensional analyses. To evaluate whether sensitivity to the
anxiety induction and changes in anxiety during each task run might relate
to disorder severity in iMUDs, we next ran linear models (LMs) with change
in self-reported anxiety as the outcome variable, and severity, withdrawal,
or craving as predictor variables (i.e., DAST, MAWQ, or DSQ, each in
separate models). To assess whether change in anxiety might lead to
changes in craving, the model with DSQ as a predictor also included
change in DSQ from baseline to after the 80 cmH2O/L/sec resistance
exposure. Baseline anxiety, age, and sex were also controlled for in each of
these models.
We also examined possible associations between AP and cognitive

reflectiveness as measured by the Cognitive Reflection Test-7 (CRT; [14]).
Specifically, we ran an LME predicting AP from CRT scores (while including
effects of resistance, age, and sex), both across all participants and in
iMUDs alone. Motivated by initial results, we subsequently ran a mediation
analysis testing CRT as a potential mediator of the relationship between
group and AP (i.e., testing whether group differences in AP might be
accounted for by differences in reflectiveness). For this test, we used the
mediate function (mediation package in R [42]) with 5000 simulations. This
analysis was also repeated in Supplementary Materials to account for
working memory.
Supplementary exploratory analyses were also performed for other

available measures in the larger study reflecting impulsivity and reward-
seeking. All details of these exploratory analyses are provided in
Supplementary Materials.

RESULTS
The breathing-based aversive state induction was effective at
increasing anxiety
The clinical and demographic makeup of the present sample is
presented in Table 1. Self-reported anxiety after each resistance level
in the sensitivity protocol is shown in the top panel of Fig. 2. Full
results of models testing effects of group, resistance level, and their
interaction on anxiety are reported in Supplementary Materials.
Confirming prior results in an overlapping sample [31], anxiety levels
increased with resistance, iMUDs had higher anxiety ratings than
HCs, and anxiety increased more steeply in iMUDs than in HCs.
Analogous figures and statistics for the other ratings given during
the resistance sensitivity protocol (e.g., unpleasantness, difficulty,
etc.) are provided in Supplementary Fig. S5 and Table S2.

Anxiety ratings (both self-reported and from the STAI State
scale) gathered before and after each run of the task are shown in
Fig. 2. Full results for analogous models testing effects of group,
time (i.e., pre or post), and resistance condition (and possible
interactions) are reported in Supplementary Materials. Overall,
results indicated the breathing resistance was effective at
generating moderate anxiety.

Data characterization and quality control
Values in the present sample for each parameter in this model
demonstrated sufficient normality under both resistance condi-
tions (skew < |2|; density plots shown in Supplementary Fig. S6).
In the subset of participants (HCs= 46, iMUDs= 36) who
completed the post-task assessment (Supplementary Fig. S1),
overall accuracy confirmed successful retention of transitions
and point values (M= 87.4%, SD= 19.3%) with HCs outperform-
ing iMUDs (t(80)= 4.95, p < 0.001; see Supplementary Materials
for more details). Thus, in relevant analyses below, we confirmed
whether differences in any computational measures could be
accounted for by these memory differences (while noting that
AP-like behavior reduces the number of times that large-loss
transitions were observed during the task, which would itself be
expected to lead to worse post-task memory). Based on iterative
Grubbs (threshold: p < 0.01; grubbs.test function from outliers
package; [43]), one HC was identified as an outlier for RS.
However, this reflected plausible behavior with high task
performance; thus, we retained this data point. Nonetheless,
we confirmed that all results remained qualitatively identical if it
was removed.

Aversive pruning was elevated in individuals with
methamphetamine use disorder
Model parameter values by group and resistance condition (as
well as model-free measures of behavior) are presented in
Table 2 and visualized in Fig. 3. Results of the Group effect in
each LME are also shown in Table 2. All other results are
provided in Supplementary Table S3A. The Resistance effect was
not significant in any model (Fs ≤ 3.68, ps ≥ 0.058).
In the model predicting AP, there was a significant effect of

group (F(1,100)= 16.46, p < 0.001, η2p ¼ 0:14), such that iMUDs
pruned more than HCs (large effect size of Cohen’s d= 0.81 in
post-hoc contrasts). There was also a significant Group x Resistance
interaction (F(1,90)= 5.17, p= 0.025, η2p ¼ 0:05) indicating that
iMUDs pruned more without the added resistance than with it. An
effect of sex was also observed (F(1,84)= 5.98, p= 0.017,
η2p ¼ 0:07), indicating greater pruning in female participants.

Table 1. Demographic makeup of both groups (mean and SD) and statistical tests to assess sample differences.

Measure Healthy comparisons (n= 49) Individuals with methamphetamine
use disorder (n= 40)

Statistical
comparison

Sex (F) 36 12 χ2(1)= 31.77,
p < 0.001

Age 35.14 (13.3) 37.12 (7.12) t(87)= 0.85,
p= 0.399

Working Memorya 52.19 (8.13) 46.78 (10.03) t(82)= 2.73,
p= 0.008

PHQ-9 1.88 (2.39) 4.28 (4.18) t(87)= 3.39,
p= 0.001

OASIS 1.18 (1.58) 4.90 (3.53) t(87)= 6.61,
p < 0.001

DAST -- 7.72 (1.91) --

Working memory scores are fully corrected for age, sex, education, and race/ethnicity. We used two-sided t-tests (and a chi-squared test in the case of sex) to
measure the significance of differences between the two groups.
Bolding indicates statistically significant effects.
aData only available in a subset of participants: HCs: n= 47, iMUDs: n= 37.
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For further interpretation, we subsequently analyzed LL-
discounting and NLL-discounting separately. When predicting LL-
discounting in analogous LMEs, there were again main effects of
group and sex, such that iMUDs discounted more than HCs and
that female participants discounted more than male participants
(F(1,85)= 4.70, p= 0.033, η2p ¼ 0:05). Similarly, there was a
significant Group x Resistance interaction (F(1,90)= 4.84,
p= 0.030, η2p ¼ 0:05), reflecting a pattern consistent with what
was found in models of AP.
Analogous LMEs predicting NLL-discounting showed no

significant effects (Fs ≤ 2.38, ps ≥ 0.126), suggesting findings for

AP were explained by differences in LL-discounting. In other
words, the alternative (or complementary) hypothesis that
iMUDs would show a shorter planning horizon in general was
not supported.
Analogous LMEs predicting RS did not show any significant

results. This therefore did not provide support for the alternative
(or complementary) hypothesis that iMUDs would show a
generally lower level of prospective reward sensitivity in
planning. However, it bears mention that the notably greater
RS values (numerically) in HCs (shown in Fig. 3) were significant
(F(1,85)= 5.65, p= 0.020, η2p ¼ 0:06) before accounting for

Fig. 2 Anxiety induction efficacy. Top: Boxplots (median and quartiles) for self-reported anxiety ratings across the resistance sensitivity
protocol (scale 0–10). Anxiety for iMUDs (n= 40) was higher than HCs (n= 49; F(1,101)= 14.21, p < 0.001, η2p ¼ 0:12), and anxiety increased as
a function of inspiratory resistance level (F(1,977)= 710.53, p < 0.001, η2p ¼ 0:42; b= 0.644). Bottom: Boxplots for self-reported anxiety (scale
0–10) and State-Trait Anxiety Inventory (STAI; [35]) State ratings (scale 0-80) from pre- to post-task for runs with and without the breathing
resistance. Again, anxiety was generally higher in iMUDs (Fs > 14.39, ps < 0.001) and also increased with resistance level (Fs > 4.50, ps < 0.001).
Stars indicate significant differences in post-hoc comparisons between groups at each resistance level (top) or time point (bottom).
*p < 0.05,**p < 0.01,***p < 0.001.
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group differences in state anxiety; thus, covariance between
anxiety levels and group may have masked this effect.

Group differences in task performance were primarily at
shorter depths
After assessing model-based behavior, we also performed
complementary assessment of model-free metrics (i.e., overall
points won and accuracy by path depth on trials with and
without large losses on the optimal path [i.e., OLL and ONLL],
respectively). Bar plots for accuracy by trial depth and resistance
condition are shown in Fig. 3b. Results showed that HCs won
more points than iMUDs (see Table 2) and that male participants
scored higher than female participants (F(1,85)= 5.04, p= 0.027,
η2p ¼ 0:06).
When predicting percentage of correct OLL trials by path

depth, there were effects of group (see Table 2), depth
(F(1,437)= 158.79, p < 0.001, η2p ¼ 0:27), and their interaction
(F(1,437)= 11.84, p < 0.001, η2p ¼ 0:03). Post-hoc contrasts
showed that: (1) HCs had higher overall accuracy than iMUDs;
(2) accuracy decreased as path depth increased (b=−0.102);
and (3) OLL accuracy decreased more sharply in HCs (estimated
marginal trend [ET]=−0.13) than iMUDs (ET=−0.07;
t(437)= 3.44, p < 0.001, Cohen’s d= 0.33). Here, HCs were

more accurate than iMUDs at depth 3 and depth 4 but
dropped more steeply to become equivalent to iMUDs at depth
5. There was also an effect of sex (F(1,85)= 10.06, p= 0.002,
η2p ¼ 0:11), where male participants (estimated marginal mean
[EMM]= 0.33) had higher OLL accuracy than female partici-
pants (EMM= 0.21; t(85)= 3.17, p= 0.002, Cohen’s d= 0.70).
Aside from the expected effect of depth on ONLL trials (with

greater path depth predicting worse accuracy; F(1,437)= 215.49,
p < 0.001, η2p ¼ 0:33; b=−0.132), no other significant effects were
observed (Fs ≤ 2.44, ps ≥ 0.119).

Group differences were not explained by memory, anxiety/
depression, or comorbidities
To address potential concerns about confounding effects of
working memory capacity or long-term recall on task perfor-
mance, we reran the models above predicting computational
parameters when including working memory scores and accuracy
on the post-task memory assessment as covariates. Results of all
LMEs above were largely equivalent when including working
memory and post-task memory scores as additional covariates
(i.e., in the subset of participants with available data; see results in
Supplementary Table S3B). In particular, observed group differ-
ences for AP remained significant.

Table 2. Computational model parameters and model-free task metrics by group and resistance condition.

Resistance Condition HCs (n= 49) iMUDs (n= 40) Effect of Group Contrast

Aversive Pruning (π) F(1,100)= 16.46, p < 0.001,
η2p ¼ 0:14

iMUD= 0.33, HC= 0.15;
t(100)= 4.06, p < 0.001, d= 0.81No resistance 0.18 (0.21) 0.35 (0.19)

Resistance 0.19 (0.21) 0.29 (0.18)

Large-Loss Discounting Probability ð1� γSÞ F(1,100)= 13.45, p < 0.001,
η2p ¼ 0:12

iMUD= 0.49, HC= 0.33;
t(100)= 3.67, p < 0.001, d= 0.74No resistance 0.35 (0.21) 0.50 (0.18)

Resistance 0.36 (0.19) 0.45 (0.17)

No Large-Loss Discounting Probability ð1� γGÞ F(1,100)= 1.67, p= 0.199 ns

No resistance 0.17 (0.06) 0.15 (0.06)

Resistance 0.17 (0.06) 0.16 (0.06)

Reward Sensitivity (β) F(1,100)= 3.01, p= 0.086 ns

No resistance 0.08 (0.04) 0.06 (0.03)

Resistance 0.07 (0.03) 0.06 (0.03)

Total Points Won F(1,100)= 14.81, p < 0.001,
η2p ¼ 0:13

iMUD= 2034, HC= 3145;
t(100)= 3.85, p < 0.001, d= 0.77No resistance 3009.18 (1230.88) 2114.00 (1406.69)

Resistance 3004.29 (1021.07) 2117.25 (1403.15)

Percent OLL Trials Correct F(1,490)= 25.30, p < 0.001,
η2p ¼ 0:05

iMUD= 0.19, HC= 0.35;
t(99)= 3.99, p < 0.001, d= 0.45No resistance Depth 3 0.44 (0.32) 0.26 (0.22)

Resistance 0.41 (0.31) 0.26 (0.23)

No resistance Depth 4 0.38 (0.24) 0.26 (0.20)

Resistance 0.34 (0.22) 0.25 (0.18)

No resistance Depth 5 0.16 (0.16) 0.10 (0.10)

Resistance 0.18 (0.14) 0.11 (0.09)

Percent ONLL Trials Correct F(1,473)= 0.33, p= 0.568 ns

No resistance Depth 3 0.87 (0.17) 0.84 (0.20)

Resistance 0.91 (0.11) 0.84 (0.23)

No resistance Depth 4 0.78 (0.26) 0.77 (0.24)

Resistance 0.79 (0.23) 0.70 (0.26)

No resistance Depth 5 0.65 (0.30) 0.59 (0.28)

Resistance 0.61 (0.30) 0.55 (0.27)

Columns on the right indicate statistics for the group effect in LMEs predicting each behavioral metric based on group, resistance condition, and their
interaction. Results for contrasts show estimated marginal means (EMMs) for each group as well as a t-test comparing those values. These contrast results are
only shown when the effect of group was significant.
ns nonsignificant, OLL optimal large-loss, ONLL optimal no large-loss.
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No models testing possible effects of trait anxiety and depression
(i.e., scores on the OASIS and PHQ-9, respectively) showed significant
results (see Supplementary Tables S4A, B). When comparing iMUDs
with and without specific comorbid substance use diagnoses, we
found no differences in AP estimates between those with and
without alcohol or opioid use disorders (noting that we were 80%
powered to detect large effects only; η2p>0:17). However, we did
observe that individuals with alcohol use disorder showed lower LL-
discounting than those without (see Supplementary Materials for
details; see Supplementary Table S1 for a full breakdown of
comorbidities). However, values for both alcohol (37.5%) and non-
alcohol users (62.5%) each remained numerically higher than HCs
(alcohol: M= 0.41 ± 0.16; non-alcohol: M= 0.52 ± 0.14; HCs:
M= 0.36 ± 0.18). No other significant differences were found for
any computational parameter.
No significant effects were found when predicting model

parameters with length of abstinence (days since last metham-
phetamine use: M= 57.25 ± 42.65), days since start of treatment
(M= 30.28 ± 11.00), or medication status (n= 30 medicated;
Fs ≤ 3.33, ps ≥ 0.077; see Supplementary Materials).

AP showed a negative relationship with total points won in both
resistance conditions (rs ≥ |0.26|, ps ≤ 0.013), suggesting that higher
pruning in iMUDs was maladaptive; all other relationships between
model-based and model-free metrics were in expected directions
(Fig. 4a). As further confirmation of the unique relationships
between each parameter and task performance, we also tested a
model that included all three parameters as joint predictors of total
points won (with resistance condition as a covariate). As expected,
results showed that each parameter was independently associated
with performance (ps < 0.001). Namely, higher values for each
discounting parameter were associated with fewer points (in
thousands; bNLL=−9.29; bLL=−2.89), while greater reward
sensitivity showed the expected positive association (b= 30.40).
Thus, the maladaptive influence of LL-discounting (and thus AP) on
points was not accounted for by differences in RS or general
planning horizon (i.e., NLL-discounting).
Inter-correlations between the three model parameters for all

participants demonstrated sufficient differentiability (Fig. 4b).
Exploratory relationships between model parameters and demo-
graphic variables are shown in Fig. 4c.

Fig. 3 Computational parameters and model-free metrics of behavior. a Raincloud plots showing distributions for each model parameter
by group and resistance condition as well as individual data points connected by thin lines and group means and standard errors depicted by
thick lines and confidence ribbons (iMUDs: n= 40; HCs: n= 49). Independent of resistance level, iMUDs had larger AP estimates
(F(1,100)= 16.46, p < 0.001, η2p ¼ 0:14) and larger LL-discounting estimates (F(1,100)= 13.45, p < 0.001, η2p ¼ 0:12) than HCs. b Means and
standard errors for choice accuracy, which differed by group in trials where the optimal path included large losses (OLL trials; F(1,490)= 25.30,
p < 0.001, η2p ¼ 0:05). This was driven by differences at depths 3 and 4. Stars indicate significant effects. LL large loss, NLL no large loss.
*p < 0.05, **p < 0.01, ***p < 0.001.
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Supplemental analyses of intraclass correlations (ICCs; one-way,
consistency) for each model parameter between runs (Supple-
mentary Table S6) suggested that, despite condition differences,
repeated task performance tended to produce moderately
consistent values for each participant (ICCs: AP= 0.61; NLL-
discounting= 0.48; LL-discounting= 0.66; RS= 0.48). Complemen-
tary LMEs presented in Supplementary Table S7 and Supplemen-
tary Fig. S8 also tested for potential practice effects (Run-1 vs.
Run-2) on each parameter (including age, sex, and potential
interactions with group as covariates). In brief, results suggested
practice effects on RS (greater values in Run-2), as well as
decreased NLL-discounting values from Run-1 to Run-2 in HCs but
not iMUDs. No significant practice effects were observed for LL-
discounting or AP (see Supplementary Materials).

Craving and withdrawal symptoms relate to both resistance
sensitivity and model parameters
When restricting to iMUDs (n= 40), linear models (LMs)
predicting resistance sensitivity (i.e., change in anxiety level
from pre- to post-sensitivity protocol session), using DAST (drug
abuse), MAWQ (withdrawal), and DSQ (craving) scores showed
largely nonsignificant results (Fs ≤ 1.90, ps ≥ 0.177; details in
Supplementary Materials). However, more severe MAWQ emo-
tional symptoms were associated with greater increases in
anxiety after the sensitivity protocol (F(1,35)= 9.15, p= 0.005,
η2p ¼ 0:21, b= 0.602), which remained significant after correct-
ing for four subscale comparisons. No other significant
predictors of changes in anxiety ratings (measured by self-

reported anxiety and STAI State) from pre- to post-task were
found (Fs ≤ 3.96, ps ≥ 0.054).
In an LME predicting AP in iMUDs, including substance abuse

severity (DAST), resistance, and their interaction, and accounting
for age and sex, there was a significant main effect of DAST scores
(F(1,36)= 12.15, p= 0.001, η2p ¼ 0:25), indicating (surprisingly)
that more severe consequences of drug use were associated with
less pruning (b=−0.043; see Supplementary Fig. S10). In
analogous models replacing DAST scores with each scale on the
withdrawal questionnaire (MAWQ) separately, there were no
effects of withdrawal symptoms found on AP (Fs ≤ 1.28, ps ≥
0.266). In a model including baseline craving symptoms (DSQ;
n= 28), there was no significant effect of craving (F(1,24)= 2.74,
p= 0.111). However, changes in DSQ scores after anxiety
induction, accounting for baseline craving scores and the
interaction between DSQ change and resistance condition,
showed a positive association with AP (F(1,23)= 8.82, p= 0.007,
η2p ¼ 0:28), indicating that an increase in craving following anxiety
induction (i.e., within the pre-task resistance sensitivity protocol)
was associated with more pruning (b= 0.005; Supplementary Fig.
S10). There was also a significant negative effect of baseline
craving on AP (F(1,23)= 5.70, p= 0.026, η2p ¼ 0:20), indicating that
higher baseline craving predicted less pruning (b=−0.002).
To understand the unexpected negative relationships between

AP and either baseline craving or substance abuse severity (DSQ
and DAST, respectively) scores, we looked at individual scale items
as predictors in LMEs that included resistance condition only. We
found that a small number of items reflecting self-control on both

Fig. 4 Correlations between computational measures and other measures of interest. a Correlations between model parameters and
model-free task metrics across groups. b Inter-correlations between model parameters. c Correlations between model parameters and covariates
(statistics shown for sex represent t-values from independent samples t-tests, where the negative direction indicates higher values in male
participants). All relationships are shown separately for parameters under the no resistance (top) and resistance (bottom) conditions. OLL = trials
in which the optimal path contains a large loss, ONLL = trials in which the optimal path does not contain a large loss. RS Reward Sensitivity,
NLLd=ONLL Path Discounting Probability, LLd=OLL Path Discounting Probability, AP Aversive Pruning. *p < 0.05, **p < 0.01, ***p < 0.001.
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measures acounted for these relationships (DAST items 3, 4, 8;
Fs ≥ 5.40, ps ≤ 0.026 [n= 40]; DSQ items: 2, 14, 15, 27, 30, 36;
Fs ≥ 4.34, ps ≤ 0.047 [n= 28]), highlighting a context in which
pruning can be adaptive within iMUDs (e.g., individuals with
greater pruning were more likely to say “no” to items such as
“Have you engaged in illegal activities in order to obtain drugs?”
that involve possible negative immediate outcomes).
Results of analogous models testing effects of symptoms on

other model parameters are in Supplementary Materials. Briefly,
results found for LL-discounting matched those of AP. When
predicting NLL-discounting, there was also an interaction between
functional (MAWQ) withdrawal symptoms and resistance condi-
tion (p= 0.047), suggesting that anxiety induction increased the
effect of withdrawal state on planning horizon.

Cognitive reflectiveness partially explained group differences
in aversive pruning
An LME including CRT scores (n= 88), resistance condition, age, and
sex as predictors revealed that higher reflectiveness tendencies were
associated with less pruning (F(1,84)= 17.43, p < 0.001, η2p ¼ 0:17,
b=−0.036). CRT scores showed a similar relationship with LL-
discounting and a positive relationship with RS, but were not
predictive of NLL-discounting (see Supplementary Materials).
These results suggested a potential mediation model in which

greater AP in iMUDs might be explained by lower CRT scores. As
shown in Fig. 5, testing this model revealed a significant indirect
effect (ab= 0.063, p= 0.026, 95% CI: [0.01,0.13]), as well as a
significant direct effect (c= 0.111, p= 0.024, 95% CI: [0.01,0.21]),
indicating partial mediation (total effect cˊ= 0.174, p < 0.001, 95%
CI: [0.09,0.25]). Thus, group differences in AP were partially
accounted for by variation in reflectiveness.
We also assessed whether CRT scores related to symptom

severity measures in a way that could explain pruning differences
in iMUDs. In those with available data, we found that both
changes in craving scores after anxiety induction and DAST scores
each showed noteworthy but non-significant associations (DSQ:
F(1,24)= 4.06, p= 0.055, η2p ¼ 0:14; DAST: F(1,37)= 3.54,
p= 0.068, η2p ¼ 0:09) that might be further tested in future
studies with larger sample sizes. There were no relationships
observed between CRT scores and withdrawal symptoms (Fs ≤
0.43, ps ≥ 0.517).
Finally, supplementary exploration of potential relationships

between model parameters and available measures of impulsivity/
reward-seeking from the larger study did not reveal evidence for
any relationships (Supplementary Materials).

DISCUSSION
This study evaluated computational mechanisms of multi-step
planning in individuals with methamphetamine use disorder
(iMUDs) and healthy comparisons (HCs), and tested effects of an
aversive interoceptive state induction. Computational measures

included aversive pruning (AP; avoiding plans with large short-
term losses), planning horizon (number of future steps one
considers), and reward sensitivity (the degree to which planning is
guided by expected reward). We observed substantially greater AP
in iMUDs compared to HCs, independent of affective state, but no
difference in overall planning horizon. To our knowledge, no
previous study has examined this effect. Interestingly, group
differences in AP were also partly mediated by cognitive
reflectiveness, and greater pruning further predicted greater
increases in craving in response to aversive state induction. This
may be especially important given that negative affective states
are known to promote vulnerability to relapse [44, 45], which our
results suggest could be amplified in individuals with greater
pruning tendencies.
Surprisingly, we found no evidence for greater pruning after

aversive interoceptive state induction. In iMUDs, results actually
suggested greater pruning at baseline. However, it should be
noted that the induction protocol only generated modest
changes in anxiety (i.e., ~2–3 point increases on a 10-point
scale). One possibility is that effects could be accounted for by
known inverted-U relationships between arousal and cognition
[46], in which the induction kept iMUDs in a more alert or
concentrated state, and that greater anxiety would have been
necessary to produce the opposite effect.
The relationship we observed between pruning and cognitive

reflectiveness suggests that those who have developed the
cognitive habit of “thinking things through” before making a
decision may also be less susceptible to overuse of AP. This finding
may relate to previous work demonstrating deficits in other
prospective cognitive processes in methamphetamine users (e.g.,
prospective memory performance and directed exploration
[31,47,48]). It also builds on the larger body of work in
computational psychiatry suggesting shifts from model-based to
model-free control in substance use disorders (for reviews, see
[17, 49]).
We also highlight, however, that AP should not always be seen as

maladaptive. Indeed, in contexts where a decision tree is too large
for exhaustive search, AP can act as a beneficial heuristic. This may
also be the case when planning is constrained by internal effort
costs or limited cognitive resources. In this light, cognitive
reflectiveness scores in our data might be seen to index an
individual’s subjective cost of internal simulation, perhaps account-
ing for their relationship to AP. On the other hand, one might expect
the cost of internal simulation to reduce planning depth generally,
as opposed to affecting AP in particular. Limitations on cognitive
effort would likely promote greater randomness in choice as well
(i.e., reflected by lower reward sensitivity). It should also be
emphasized that, even when accounting for effects of the other
parameters, higher AP in our data was associated with worse task
performance (e.g., reduced overall points won), suggesting it was
maladaptive in this context. Differences in performance associated
with AP were also seen at the shortest planning depths (i.e., depth

Fig. 5 Mediation model indicating that cognitive reflectiveness partially accounted for group differences in aversive pruning. Graphical
depiction of results indicating that lower cognitive reflectiveness levels (CRT scores) partially accounted for greater aversive pruning (AP) in
iMUDs compared to HCs (available data: n= 89). Note that the relationship shown between group and CRT accounts for age and sex.
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3), where internal simulation would have been least costly. This
suggests the greater AP in iMUDs seen here may be better explained
by cognitive avoidance of thinking about plans with immediate
negative outcomes, as opposed to less internal search in general or
greater resource constraints (recall that working memory capacity
differences also did not account for these effects).
Of potential clinical relevance, studies have demonstrated that

reflectiveness can be improved with training [50–55]. Thus, this
could be a targetable mechanism through which AP might be
reduced. In line with our present findings, it is also possible that
those with stronger cravings during aversive states (e.g., stress,
withdrawal) are those who become more short-sighted during
decision-making, which could, in turn, promote relapse [44, 45].
Future studies in larger samples should evaluate whether lower
reflectiveness could link craving and pruning behavior, and whether
interventions focused on increasing reflectiveness might reduce
pruning and/or lessen chances of relapse.
Some important limitations and future directions should be

considered. First, sex was imbalanced between groups, with limited
sample size to support tests of possible differences. While we
confirmed group differences were present for each sex separately
(see Supplementary Fig. S9), future work in a balanced sample should
replicate these results and investigate possible sex effects within each
group. At present, the observed patterns across males and females
should be interpreted with caution. Some iMUDs also had comorbid
disorders, with opioid and alcohol use disorder being most
prominent. These disorders have also been characterized in terms
of cognitive and decision-making impairments, such as increased
impulsivity [56, 57], reduced cognitive flexibility [58, 59], and reduced
consideration of long-term outcomes [60–62]. While these comorbid-
ities did not account for observed group differences in our analyses,
our data nonetheless provide only limited evidence for specificity
to MUD.
The available sample size to examine relationships between task

behavior and continuous clinical measures was also limited.
Nonsignificant results (e.g., with respect to depression/anxiety
scores) might therefore reflect false negatives. Significant results
(e.g., observed relationships to craving) should also be seen as
preliminary and interpreted with caution, and replication in larger
samples will be important to confirm their generalizability.
As there were some differences in the surrounding study

protocol for the two groups (see Methods), we also cannot rule out
that this influenced behavior. It should also be highlighted that
the cross-sectional design of the present study does not allow us
to differentiate whether observed effects represent pre-existing
vulnerability factors or effects of substance use itself. We did not
find lower pruning in those with greater length of abstinence, but
studies testing a wider range of abstinence periods will be
important.
Finally, the present study focused largely on planning mechan-

isms aimed at minimizing losses, allowing us to measure avoidance-
related cognition and choice. However, possible differences with
respect to small vs. large (and early vs. late) gains may not be fully
captured in this task. Thus, future work in substance use disorder
populations should also use tasks better optimized for detecting
possible deficits in planning mechanisms in the domain of
maximizing gains as opposed to minimizing losses.
In summary, we found that individuals with methamphetamine use

disorder exhibited elevated aversive pruning on a multi-step planning
task designed to pit large anticipated losses in the short-term against
optimal positive outcomes in the long-term. This novel finding
suggests a model-based impairment in the ability to consider optimal
plans that require one to endure short-term aversive states. This effect
has potential real-world relevance, as it mirrors difficult decisions
faced by this population in which pruning could maintain use (e.g.,
not being able to consider the long-term benefits of abstinance due
to the anticipated short-term pain of withdrawal). It also highlights a
potentially novel treatment target with correlates (i.e., reflectiveness)

known to improve with training. If replicated in future work, crucial
next steps will require longitudinal and intervention studies designed
to assess how pruning might relate to vulnerability and treatment
response, and whether it can be modified in a manner that could
improve clinical outcomes.
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